
RD-Ri52 215 AN AUTONATED/INTERACTIYE SOFTHARE ENGINEERING 1T0O. TO 144
GENERATE DATA DICTIONRRIES(U) AIR FORCE INST OF TECH
MRIGNT-PATTERSON AFB OH SCHOOL OF ENGI. C N THOMAS

UNCLASSIFIED DEC 82 RFIT/GCS/ENG.'84D-29 F/G 9/2 ML

wmhmhhhhmu-n
mhhhhmmhhhhhl
mhmmhhmhmhlm
EhmhohmhhEmhhE
mhhEEEEEEohEEI

EEEmohhhmhhhI

,2.5

!1.

11111 11111_L6

MICROCOPY RESOLUTION TEST CHART

NATIONAL RIIRAFI OF FNAPO !F-

REPRODUCED AT GOVERNMENT EXPENSE

In

IOF

NN

0 O I

C h arl s " ho m a

0_ ____AP_4_198

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITYA

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

85 03 1 8

AFIT/GCS/ENG/84D-29

AN AUTOMATED/INTERACTIVE SOFTWARE

ENGINEERING TOOL TO GENERATE DATA

DICTIONARIES

THESIS

Charles W. Thomas
Captain, USAF .. -

AFIT/GCS/ENG/8B4D-29

APR 4 *.335

Ap v -psi

• Approved for public release; distribution unlimited.

................................ .';. .li--

A .-.

AN AUTOMATED/INTERACTIVE SOFTWARE ENGINEERING TOOL TO
GENERATE DATA DICTIONARIES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Science

AccessiolOn ~ -

Charles W. Thomas, B.S. Di,•
~ ~A v : ,'i , -i

Captain, USAF
S

D e c e m b e r 1 9 8 2 . .

Approved for public release; distribution unlimited

i •" •.v. .," " -.-.".".".-" -. " .". ..".." ." " , " -. - -i -Y i " ." -F ." ." ." "

PREFACE

This report is the result of my efforts to accomplish a

design and initial implementation of an automated and

interactive software engineering tool which generates data

dictionaries. The resulting implementation of this thesis

investigation is an interactive data dictionary generation

tool which accepts and maintains data dictionary information

in support of three methods of software representation;

SADT, structure charts, and code. A fourth software

representation, data flow diagrams, is not supported in the

initial implementation of the tool, however, all necessary

design work for its inclusion in the tool was accomplished.

This initial implementation of the data dictionary

generation tool represents only a partial realization of the

potential of a fully automated data dictionary generation

tool. The last chapter of this report contains

recommendations for future development of this tool.

I wish to express my sincere appreciation to Dr Gary B.

Lamont, the advisor of this investigation, for his guidance

and insight throughout the duration of this effort and Dr

Thomas C. Hartrum for his assistance in the development and

testing and evaluation of this tool. I also wish to thank

Captain Pat Lawlis for serving on the thesis committee for

this investigation.

ii "-

o-

- ',. o.. '. . -.- .- °- '° .- ., ' .% ,° .. -. . . • '. °% ,.". .,.-. - " . , - % ., .-.-. ..- . . • - . . "

Table of Contents

Page

Preface i

List of Figures..........................V

Abstract...........................viii

I. Introduction.......................

Thesis Objective...................
Background.....................1
SADT........................5
Structure Charts And Data
Flow Diagrams.................7
Data Dictionaries.................11
Problem Statement.................16
Scope of Thesis Investigation 16.. .. 1
Approach..................... ... 16

II. Requirements Definition...............19
Introduction......................19
Objectives And Concerns...........21
Functional Model For The Data
Dictionary Generation Tool..............40

III. Preliminary Design....................47
Introduction.....................47
Design Strategy..... 49
Data Dictionary Information
Content.....................55
Database Design....................70
Data Dictionary Database.............84
Database Design Alternatives. 142
Data Dictionary Generation
Tool Structural Model..............152

IV. Detailed Design....................164
Introduction 164
Algorithms For Selection of
Dictionary Operation Modules. 166
Add Entity Definition............ 168
Retrieve Entity Definition
Algorithms o 170
Print Entity Definition Algorithms ... 173
Delete Entity Definition Algorithms 176

Loity ' tit y De f in it ion AlIgo r ithms 178
LitEntity Namnes Al-gorithms...........180

L V. Implementation.........................183
Introduction....................183
Selection of Database
Management System..................183
Choice of Implementation
Lan-uage.......................188

Implementation of Dictionary

Database......................190
Implementation of IDataDictionary
Generation Tool Functional Modules . . . 194

VI. Conclusions And Recommendations.............206
Introduction......................206
Design Summary......................206
Implementation/Testing Results..........207
Recommendations For Further
Developenent......................209

Appendix A: Requirements Hodel Data
Dictionary Generation Tool 211

Appendix B: Structural Model Data
Dictionary Generation Tool..........226

Appendix C: User's Manual For Data
Dictionary Generation Tool..........267

Bibliography.............................281

Vita......................................284

iv

List of Figures

Figure Page

1 SADT Activity Diagram. 7

2. Structure Chart Diagram 8

3. Data Flow Diagram 9

4. Entity, Attribute, Relationship Structure . . . 28

5. Examples of Entity, Relationship,
Attribute Constructs 30

6. Top Level Data Dictionary Generation Tool . . . 41

7. Obtain and Use Data Dictionary Information . . 42

8. Generate Dictionary Inputs
From Software Representations 43

9. Perform Dictionary Functions 44

10. Software Representation Action
to Entity Information Elements 58

11. Software Representation Data
Information Elements 59

12. Example Relational Table 73

13. Use of Keys In Relations 76

14. Normal Forms 79

15. Transitive Dependence 83

16. Description Relation 85

17. Description Relation Example 86

18. History Relation 87
Si

19. History Relation Example 88

20. Logical Decomposition Usin"
Data Flow Diagrams 90

* 21. Hierarchy Relation 91

!_C

tA tAo . **

22. Hierarchy Relation Example 92

23. Reference Relation 93

24. RefType Attribute Values 95 .,

25. Alias Relation 96

26. Alias Relation Example 98

27. Value Set Relation 100

28. Value Set Relation Example 101

29. Algorithm Relation 103

30. Algorithm Relation Example 103

31. Activity Relation 104

32. Activity Relation Example 105

33. Activity_IO Relation 106

34. SADT Activity and Data Item Interaction 107

35. ActivityIO Relation Example , , , , , , , , , 107

Ae 36. Data Item Relation 108

37. Bubble Relation111

38. Bubble Relation Example 112

39. BubbleIO Relation 112

40. Bubble_10 Relation Example 114

41. Data Flow Relation 115

42. Process Relation 117

43. Process Relation Example 1 18

44. ProcessIO Relation 119

45. Class and Direction Attribute Values 121

46. Process_10 Relation Examplel............123

47. Structure Chart)iagram 124

vi

±MA~t.. ,..

48. Process_10 Relation Example 2...........126

49. PrCall Relation........................127

50. PrGall Relation Exaiiple...............128

51. PrPassed Relation..................128

52. Pr_-Passed Relation Example.................131

U 53. Parameter Relation....................132

54. Module Relation.....................134

55. Module_10 Relation..................136

56. MCall Relation.....................138

57. MPass Relation.....................139

58. Variable Relation......................141

59. Data Item Relation Design Alternative 146

60. Sample HIPO Function Chart..............153

61. IPO Diagram Example...................153

62. 1105 Function Specification..............154

63. Top Level Structural Model..............155

64. Perform D~ata Dictionary Functions 156

65. Selection of Dictionary Operation 158

66. Input Entity Definition..................160

67. Input SADT Activity Definition............162

68. Main Relations For Printing Entity Definitions 174

69. Create Relation Example..................193

vii

I7

AFIT/GCS!/ENG84D-29

Abstract

The purpose of this investigation is to design and j
develop an automated/interactive software engineering tool

which generates data dictionaries. This tool is provide the

user with an interactive data dictionary tool to support the

development of software in all phases of the software life

cycle. The tool supports data dictionary information for

specific methods of software representation. The initial

implementation of this tool supported. four methods of

software representation: SADT, data flow diagrams,

structure charts, and code. The requirements definition for

the tool includes a discussion of the objectives and

concerns associated with the tool development. Data flow

diagrams are used to formulate a requirements model. The

preliminary design specifies the type of information to be

contained in the data dictionary for each of the methods of

software representation supported and database design

required to maintain the data dictionary information. The

structural framework of the application software which

provides the interface between the tool user and the

dictionary database is specified and structure charts are

used to model this structural framework. In detailed

design, algorithms are developed for the tool's application
0I

software.

viii

The dictionary database is implemented through the use

of the INGRES database m'anagement system. The application

software is .oded using the C programming language. The

application software interfaces with the dictionary database

by means of embedded EQUEL (INGRES Embedded Query Language)

statements in the C language source code. The tool was

implemented on the VAX 11/780 computer using the UNIX

operating system.

P

'S

i~x

.................

-~ ~ -.-.. T-

AN AUTOMATED/INTERACTIVE SOFTWARE ENGINEERING TOOL TO
GENERATE DATA DICTIONARIES

I. Introductio.

Thesis Objective

The objective of this thesis investigation is to design

and develop an automated/interactive software engineering

tool which translates the information contained in graphical

software engineering techniques into data dictionaries.

This tool will employ a combination of user interaction and

machine analysis to extract the required data dictionary

information from the graphical representation. During
60

machine analysis the tool will 'attempt to detect any

specification errors detected in the graphical

representation and bring them to the attention of the user.

This tool will support the development of software through

all phases of the software life cycle.

0

Background

Advances in both the application and affordability of

electronic computer systems have greatly increased the

demand for reliable, cost efficient, and maintainable

software. Unfortunately, our inability to produce quality

software products in a timely and cost effective manner has

1i

,°S " . " " - - ° ' - " • . f .° ° ' . ° " ° ° o . ° - . ° - . . °. " . . . - " ° . , - " , " . - ' , - ° .° o , , " . f • . '

L'--- --. " '," ".'_',- ._'" " " " " _ _ _ _ " . , •. -- ° . , " • - " - " -

led to a situation which many people refer to as the

software crisis.

For the computational power of the computer to be fully

realized, we must place increased emphasis on improving the

methods and tools used in software production.

The problem of the 1980s is different. Now
we must reduce the. cost of electronic solutions;
that is, reducing the cost you incur in using our
device to build a product. Solving this problem
will require a shift from the component integration
of the 1970s to concentration on system level
integration in the 1980s.

We can now talk about putting the power of a
mainframe CPU on a single chip. This buys you
nothing as acustomer, however unless you can use
that power. Hardware is commputing potential; it
must be harnessed and driven by software to be
useful. (1:22)

Software production problems can best be resolved by

considering software development from a life cycle point of

view. "The complexity of a large software system surpasses

the comprehension of any one individual. To better control

the development of a project, software managers have

identified six separate stages through which a software

project pass; these stages are collectively called the

software development life cycle" (2:198).

The definition and nomenclature of the six phases which

constitute the software life cycle vary from author to

author. For the purpose of this investigation, the

following is used to define the phases of the software life

cycle: requirements definition, preliminary design,

detailed Design, implementation,integratihn, and

2

maintenance. Most versions of the life cycle include a

phase which is dedicated to testing, validation, and

verification. In this paper, testing, validation, and

verification will be considered an integral part of all

phases of the life cycle rather than as a separate and

distinct phase.

The purpose of the requirements definition phase is to

clearly define exactly what the proposed software project is

to accomplish for the user. The primary emphasis during

this phase is to define as precisely as possible the exact

function or functions the software project is to perform.

This life cycle phase will require a great deal of

interaction between the ultimate user of the software and

the software designer.

During the preliminary design phase, the information

obtained during the requirements definition phase is used to

determine the structure and framework of the software. "The

preliminary design step is an attempt to develope software

beginning from the top down. Information flow or structure,

determined from requirements, becomes a tool that leads to

an overall representation of software" (1:132). In this

phase, the software project is broken down into modules

which represent particular functions. These functional

modules are further decomposed into sub-functions to obtain

a hierarchial representation of the software project.

During tihe detailed design phase, the functions defined

3

in the preliminary design phase are further detailed and

decomposed . The functional modules are converted into

specific algorithms which perform the function. "Detailed

design provides a blueprint for coding. With the use of a

design representation that may be graphical, tabular, or

textual, a detailed procedural specification for the

software is created. Like the blueprint, the detailed

design specification should provide sufficient information

for someone other than the designer to develop resultant

source code" (1:133).

The implementation phase represents the actual coding

of the software. Utilizing the detailed design information,

the software project is translated into a particular

programming language.

During the integration phase, the project software is

installed on the target hardware. Extensive testing will

take place during this phase to ensure that the software

meets all specified requirements.

The maintenance phase of the life cycle consists of

activities involved in the actual use of the software.

These activities include the detection and correction of any

errors and the modification of the software to meet any

changing user requirements.

In order to support the development of software through

the various stages of the life cycle, numerous software

engineering tools and methodologies have been developed.

4

The aim of these efforts is to improve our ability to

produce cost efficient and reliable software products and to

help control the software crisis.

While there are many existing software engineering

tools and methodologies in use, four in particular have

gained widespread use within the Defense software community:

Structured Analysis Design Technique (SADT), data flow

diagrams, structure charts, and data dictionaries. The

first three tools listed above are graphical techniques used

in the requirements definition and design phases of the

software life cycle.
0

SADT

"SADT (a trademark of Softech, Inc.) is a systems

analysis and design technique that has been widely used as a

tool for system definition, software requirements analysis,

and system and software design" (1:120). SADTs consist of a

graphical representation of the software project which

enhances the analysis and communications process which is so

critical during the requirements definition and the design

phases of a software project. "SADT is a technique that

enables people to understand complex systems in a complete

and precise manner, and enables them to communicate their

understanding" (3:A-2). The application of the SADT

technique results in a model which describes what functions

5

............

a system must perform, specifies how a system is to be

designed and constructed, and explains how a system is to be

used and maintained.

The SADT model consists of a series of diagrams that

decompose a complex problem into its component parts. The

initial diagram will present a general or abstract

description of the problem. Subsequent diagrams will

decompose the problem into smaller less complex components.

As the decomposition process continues, the level of detail

illustrated by the diagrams will increase. This iterative

process will continue until a level of detail is reached

where further decompostion is not possible.

The SADT diagram consists of boxes and arrows which

illustrate the components of a system and their relationship

* to one another. "The notation employed is simple: boxes

describe functions and arrows describe interfaces between

functions. Diagrams, composed of boxes and arrows are used

as the framework for expr ssing whole units of a system"

(4:31).

The direction of the arrows and the point of attachment

of the arrows to the box have a specific meaning in the

semantics of the SADT diagram (see figure 1). "If a box

represents an activity, then input data (on the left) are

transformed into output data (on the right). Controls (on

the top) govern the way the transformation is done.

Mechanisms (on the bottom) indicate the means by which the

6

r

activity is performed. A "mechanism" might be a person or a

committee or a machine or a process" (3:A5).

CONTROL

hi
INPUT ACTIVITY OUTPUT

MECHANISM

Figure 1. SADT Activity Diagram

"SADT diagrams show both the things (objects or data)

44 and the happenings (functions or activities) in a system"

(3:A2). Two separate types of diagrams are used in the

SADT methodology. The activity diagram uses the boxes to

represent activities and the labeled arrows constitute the

input data, output data, control information, and

mechanisms. The data diagram uses the box to represent a

data item and the labeled arrows to represent acitvities

involving the data.

Structure Charts and Data Flow Diagrams

Structure charts are a graphical representation of the

sub-functions or modules of a software system and their

7.

°. . .• .. ' " ° °' ' ° °° . • o" " " .° " " . " . " ° • , . .' " " . ." .° " , - - -° °o ° . o " -° • " -° . ' .' - ° "' - , -, -. ' , * " .•7 '

• .z'. /_'." -"...- . ." _* -* . " *,"- .. "-".*. .*'* '.*,. *'' ' ,' .Z °. ' -. ''.2 J 2
".

''_. 'j ' ,_"°. _ j

relationship to one another. "Structure charts were

originally developed by Constantine et al; k6 to specify

modular characteristics of software during design" (5:1087.

The graphics used in structure charts provide a clear

picture of the interaction between modules and the basic

structure of the software system (see figure 2). "Structure

charts can be drawn in several different ways. The approach

proposed by Constantine utilizes three basic graphical forms

1(the rectangle, used to contain a module or module
descriptor;

2(the vector, used to highlight interaction between
modules (usually a call);

3(the arrow with a circular tail, used to depict
transfer of data and control between modules"
(5:1087-1088).

Figure 2. Structure Chart Diagram

In structure chart notation, the arrow whose circular

tail is filled in () represents the transfer of control

information. If the circular tail of an arrow is open (not

filled in), it represents the transfer of data between

8

.................................. .--......

<1

modules.

A data flow diagram is a graphical representation which

depicts the information flows and the transforms that are

applied to data in a software system. Data diagrams are

also called bubble charts or data flow graphs (1:101). A

data flow diagram consists of a series of circles

interconnected with vectors (see see figure 3). The circles

or bubbles represent functions or transforms which act upon

incoming data, represented by incoming vectors, and produces

output represented by output vectors.

Figure 3. -Data Flow Diagrams

A fundamental. system model can be represented as a

single bubble with input and output data. This initial

diagram can be refined in a series of bubbles. "Each

transform in the diagram (bubbles) could be refined still

further to provide greater detail That is, the diagram

may be layered to show any desired level of detail" (1:101).

When using data flow diagrams as a tool in the

requirements specification and design phases of software

..

development, two important factors should be kept in mind.

"Since movement and transformation of data are the only

characteristics represented by data flow diagrams, the

concept of the passage of time along any single or several

data flow path(s) is not present" (5:1090-1091). The other

factor of importance is that the decomposition process

produces a network of programs rather than a hierarchy of

programs (6:23).

Both structure charts and data flow diagrams are

utilized in a software design technique known as data flow

design method. "The data flow designmethod was first

proposed by Larry Constantine (Reference 2) and has since

been propogated and extended by Ed Yourdon and Glen Myers

(References 2,3). It has been called by several different

names including Transform Centered Design and Composite

Design" (7:305).

The data flow design method is based upon the

functional decomposition of a software with respect to data

flows. The data flow diagram is used to help the designer

show the flows and transformations of data through the

system. The data flow diagrams are then partitioned into

three different types of transforms : efferent, afferent,

and central.

The afferent transforms represent the input and are

concerned with accepting and developing the system's input.

The efferent transforms are concerned with delivpry of the

10

systems output data. "The central transform is the portion

of the system DFD that contains the essential functions of

the system and is independent of the particular

implementation of the input and output" (9:226). The

identification of these three portions of the data flow

diagram leads to a hierarchial decomposition of modules

which can be more effectively depicted using structure

charts. The designer will iterate between the data flow

diagram and structure chart representation of the project in

order to decompose the system into smaller more manageable

pieces.

Data Dictionaries

SADTs, data flow diagrams, and structure charts

graphically illustrate the functional structure and flow of

information or data in a software system. The information

portrayed on these graphical representation tools can be

used to determine the general content and some of the

detailed information contained in a data dictionary. In

turn, the data dictionary provides the definition and

composition of items illustrated in the graphical

representation techniques. "Basically, the use of a data

dictionary is an attempt to capture, and store in a central

location all definitions of data within an enterprise and

some of their attributes, for the purpose of controlling how

11

II

data is used and created and to improve the documentation of

the total collection of data on which an enterprise depends"
(11:1.1). --.

A data dictionary consists of dictionary entities and

their attributes. An entity can be generally placed into
Ii

one of the following three categories:

a. A data entity, such as a data item, group,
file, etc., and among its attributes may be
user names, system name, picture, description,
etc.

b. A processing entity, such as a module, program,
system, etc., and attributes may include name,
description, programming language, etc.

c. A useage entity, such as a person, department,
terminal, etc., and attributes may include name,
security attributes. (11:1.3)

The use of data dictionaries can help reduce the

j |*O rapidly growing costs associated with the documentation and

maintenance of software systems. Software experts estimate

that approximately 65% of the cost associated with software

systems occur during the maintenance phase of the life cycle

(2:201).

A data dictionary is an important tool during the

maintenance phase of the software life cycle. However, a

data dictionary can contribute significantly to all phases

of the software life cycle.

Using a DDS (Data Dictionary System) provides
economic and technical benefits. A DSS may provide
immediate savings, or it may facilitate a continuing
technical process by making it easier or more reliable
to perform. To summarize the benefits:

Better control of the organization's data resources

12

..

through improved (i.e., centralized, rigorous, and
standardized) data definitions, data handling and data
collection.

Improved transportability of data and software between
computing environments through standardized data
elements and data definitions.

Improved documentation for databases, programs, and
systems.

Automatic compilation of data definitions to be included
in application programs or in DBMS database definition.

Increased security and access control for the database
environent.

Effective aid to software development, modification, and
maintenance through configuration management of system
components of data and programs.

Increased cost effective use of- data resources
throughout the system development life cycle. (12:9)

The degree to which a data dictionary system can

provide the benefits listed above is largely dependent upon

the type of data dictionary system used and its level of

integration into the databases and system software of the

organization.

There are basically two methods of classifying data

dictionaries. One classification is based upon the

capability of the data dictionary system to provide data

entity descriptions to other software. The second

classification method is concerned with the dependence of

the data dictionary system ofl other soitware for performing

its functions.

When examining the capabiltiy to provide data entity

descriptions to other software, a data dictionary can be

13

classified as either passive or active. "A passive DDS is

an information tool that is only accessed by personnel, to

enter or retrieve entity descriptions. With a passive DDS,

descriptions of the same data will exist concurrently in

other software such as COBOL programs. Changes in DSS

content do not automatically produce corresponding changes

in the other data descriptions, and vice versa" (12:6). A

passive DDS will serve as an aid to manual procedures for

controlling data, but will not directly control an

organization's data descriptions.

"An active DDS, through software interfaces and

computer operating procedures, provides the ONLY source for

data descriptions to other processing components such as

compilers, assemblers, and DBMSs. The active DSS assists in

the enforcement of data standards and usage throughout the

organization and its computer applications" (12:6).

The dependence of a data dictionary system on other

software can be classified as either stand-alone or

dependent. "A stand alone DDS is self-contained; that is

its functions are performed without relying on any other

general prupose software such as a DBIMS" (12:7). "A

dependent D)S is specifically tailored to operate in

conjunction with another general purpose software system,

usually a DBIS. It requires the DBMS facilities to perform

DSS functions. In some cases, the dependent DSS is

implemented as an application under a)BMS, wholly using

14

L..~ ~___ __ - . . . - .~ .. t ... *~*~*. - *- *~ - ' .- .

DBMS facilities" (12:7).

The software engineering tools discussed: SADT, data

flow diagrams, structure charts, and data dictionaries

provide valuable support to the software engineer during the

various phases of the software life cycle. The automation

of these tools can help relieve the burden of the many

tedious tasks associated with applying these tools to

software projects. Although automation improves the ease of

use and effectiveness of software engineering tools, the

application of tile tools in a software development

environment can provide increased flexibility and efficiency

in the performance of software development and maintenance

tasks.

"A software development environment is a collection and

integration of automated software development tools that

should adequately support the entire software life cycle"

(13:9). An example of a software development environment is

the Software Development Workbench (SDW) developed at the

Air Force Institute of Technology (13:ix). The SDW

constitutes a continuing research effort to provide support

in the development pf software products by providing

integrated an d automated software engincering tools to

enhance software developmncnt in all phases of the life

cycle.

15

>. .-- - -.. . .-.... .. - - .- .-........ _.. • •......
. . .. ' :..L- . .. ,..,.-.-._. .'_'-,. _ '. . ?. ' -. '_- _ _ ''." .' '.-Z ,' '_. "' ._.' 'Z "_'.2._.

Problem Statement

The purpose of this *study is to design and implement an

automated tool to generate data dictionaries from graphical

software engineering tools such as data flow diagrams,

structure charts, and SADTS. This tool will interpret

the graphical software representation and interact with the

user in order to obtain the necessary information for the

data dictionary. The tool will attempt to identify any

specification errors and bring them to the attention of the

user.

The manual generation of 'data dictionaries is a tedious

and time consuming task. There exists a need for an

automated and interactive software engineering tool which

generates data dictionaries with a minimum amount of user

interaction.

Scope of the Thesis Investigation

This project will only be concerned with generating

data dictionary information for the following software

engineering graphical tools: SADTs, data flow diagrams, and

structure charts.

The initial step in the project will be to perform an

extensive literature search on the problem. This review of

16

current information will have four primary goals:

1. Gain a thorough understanding of how SADTs, data

flow diagrams, and structure charts graphically represent

data elements and data flows.

2. Evaluate current data dictionary systems in order

to determine an appropriate format for the data dictionaries

generated by the proposed tool.

3. Understand the process for generating data

dictionaries from SADTs, structure charts, and data flow

diagrams.

*!
4. Study existing automated data dictionary systems.

Utilizing the information obtained during the

literature search, the process of generating data

dictionaries will be modeled using a graphical

representation technique. Emphasis will be placed on

identifying those tasks in the process which can be

performed more efficiently with the machine and those tasks

which will require user interaction.

The next phase of the project will be to utilize a

model to formulate a requirements definition for the

automated tool. During this phase, the primary goals and

objectives of the tool will be specified. The primary

concern during this phase will be to clearly delineate

exactly what the automated data dictionary generation tool

is to accomplish for the user.

17

...

Using the requirements definition, the next step is to

perform the preliminary design of the tool. During this

phase, the component structure and framework of the tool

will be determined. The sub functions or modules needed to

meet the requirements of the tool will be identified.

The next stage involves the detailed design of the

tool. During this phase, specific algorithms or procedures

will be developed to perform the functions identified in the

preliminary design phase. A test plan for the software

associated with the tool will be designed.

The algorithms developed during the detailed design

phase will be translated into an appropriate programming

language during the implementation phase. Upon completion of

this task, the tool will be loaded onto the target computer

for testing and integration. The implementation of the tool

will be followed by extensive testing to ensure that the

tool meets all requirements specificiation.

18
Sf

iI. Requirements Definition

I

Introduction

The Requirement's Definition is a clear statement of

the goals and objectives of the proposed software system.

This phase of software developement requires a great deal of

interaction between the software devoloper and the software

user. The software user will attempt to describe the

functions or capabilities he or she expects the proposed

software to provide. The software developer will take the

user's concept and attempt to translate it into specific

functional and performance objectives.

During the Requirements Definition phase, emphasis is

placed on defining as precisely as possible the exact

function or functions the proposed software is to perform in

support of the user. In order for this software

development step to be successful, the user and developer

must be able to effectively communicate with one another.

In developing software, the possibility for misunderstanding

and misinterpretation is extremely high. "The dilemma that

confronts a software engineer may best bc understood by

repeating the statement of an anonymous (infamous?)

requester: "I know you believe you understood what you

think I said, but I am not sure you realize that what you

heard is not what I meant..."(1:9 4)

19
0

The primary component of the requirements definition

document is a functional and/or data model of the proposed

system. This model performs a dual role. It provides the

developer "with an excellent tool for defining tile

functional/data specifications for the system and enhances

the communications process between the user and the

developer.

In addition to the model, the requirements definition

may also include a description of the fundamental concerns,

constraints, and objectives that will guide tile developement

of the system. The Requirements Definition Document should

contain a set of evaluation parameters and criteria. This

will assist in eventually testing the system to ensure that

it meets all specified requirements.

The purpose of this chapter is to develop the- system

requirements for an automated/interactive software

engineering tool which translates the information contained

in graphical software engineering techniques into data

dictionaries. Initially a group of objectives and concerns

fundamental to development of the tool will be listed and

explained. With this background, the requirements for the

tool will be defined. A two dimensional graphics technique,

data flow diagrams, will be used for defininp, and describing

system requirements. Finally a set of evaluation parameters

and criteria is established to aid in testing the software

to ensure the system meets specified requirements.

20

. . . , ., •
",~~ "- -, '. . . ' ,- .- - .'' - . . . - . . , - . " -. .- .. - - ' . . - . .- .. . ". .

Qbjectives gd Concerns

Before the functional model of the data dictionary

generation tool was developed, an extensive literature

search was conducted to identify objectives and concerns

related to the design, developement, and use of data

dictionaries as software engineering tools.

Data dictionaries are becoming recognized as an

important tool in the management of an enterprise's data

resources. "Corporate management is becoming aware of an

important asset which, until recently, has been virtually

ignored. The asset is data The idea of data being a

corporate asset is relatively new, and has developed along

with the influence of computers in business. The capacity

of computer storage devices for holding data has increased

and the relative cost of these devices has decreased"

(14:118).

The recognition of the importance of data as an

organizational resource has led to the development of data

dictionary systems with a wide range of capabilities and

features. The objectives of a data dictionary system depend

upon the types of activities it supports. The objectives of

the automated/interactive data dictionary generatin, tool

will not only consist of those for the resulting data

dictionary, but also the objectives of the portion of the

tool which extracts data dicitonary information from the

21

software representation method. The objectives and concerns

regarding the data dictionary generation tool are described

and listed in the following paragraphs.

Support All Phases of the Software .Q C . A

primary objective of this tool will be to provide improved

support for all phases of the software life cycle. The data

dictionary generated by this tool can be used as the sole

source for metadata (information about data) through all

phases of the software life cycle. To better define

objectives, each life cycle phase and the support it can

receive from a data dictionary system will be described

individually.

Suppo..r. Requirmemnt's Definition h.a.

"The use of the DD/DS (Data Dictionary/Directory

System) in requirement' s definition and analysis is

critical. The DD/DS provides a framework in which the end

user and analyst can communicate with each other using

common terminology and definitions" (15:34). As discussed

earlier, miscommunication between the user and designer can

cause serious problems in any software project. By

maintaining consistency in the data used, a data dictionary

system can aid in averting potentially disastrous conditions

caused by inexact or inconsistent data.

The data dictionary is also used in the requirement's

definition phase to document requirements as they are

defined and to support their analysis. The data dictionary

22

• "~~~-" --- -- ---" - - - - -., -.,' . -.. _;:. :,-. -. 2t,... :-t. -..'.,' .. '.. . -.-' . -."..2'_''".- .- ". . -. "-. ","."."•". "

S -Aj

records descriptions of processes, information about the

operation of processes, potential uses of the processes, and

the data elements required by the processes. It also

contains information about the relationship between

different processes and data elements.

Once data requirements are defined, it is necessary to

determine how much of the data is currently available in the

data resource inventory. This will help ensure that

unnecessary redundancy is not introduced. "Another step in

the analysis is to determine if the requirements can be

satisfied by modifying existing data. -The assistance of

DD/DS is invaluable at this stage, especially if the DD/DS

already has a complete inventory of the enterprise's data.

This is further supported when the data defined in the DD/DS

has common definitions which can facilitate the analysis

process" (15:44).

Sup port Preliminary and Detailed Desgnj Phas es.

Design specifications require information about data or

metadata. "Recording these metadata in the DD/DS is very

useful because the DD/DS can provide a means for maintaining

control over the system design specifications and can aid in

insuring that requirements stated earlier are consistent

with the implementat ion. This can be accomplished at the

common denominator between the "what" and the "how", which

is the data element" (15:46).

23

..................

p- 4

The data dictionary is a valuable tool in performing

both system and database design. The data dictionary can be

used for storing the descriptions of system components such

as program modules, subsystems, data flows, and data

structures. The descriptions will contain such information

as functional characteristics, interaction between different

components, and the data components require for operation.

"Database design involves describing the data required

by the programs, beginning with previously developed

definitions of the data elements, records, and descriptions

of storage structures and access strategies. These are used

to generate a desired data structure or schema for the

database. Also from these descriptions, the programs view

of the data, or subschema can be generated" (15:47). The

data dictionary's ability to store these descriptions make

it a valuable aid in the database design process.

Support Implementation Phase.

"N'etadata about the program and about the data can be

retrieved from the DD/DS to help in the programming task.

Pertinent metadata retrieved from the DD/DS can be

incorporated directly into the programs being coded as the

the data definition block" (15:47).

Support the Intc.gratJon PhsC.

During the integration phase of the software life

cycle, the testing and validation of the software project is

24

. . - . , ° • . °° • - ° . ° - . .. ° ° • . . , . ° . • . ° ... •' . |.

an important step. The data dictionary can aid in this

effort. "Use of metadata can be extended to testing and

validation. Once the characteristics of the database are

recorded, it would be easier and possibly more reliable to

generate test data using metadata recorded in the DD/DS"

(15:48).

Support Operations an_ Maintenance Phase.

The biggest contribution of a data dictionary system

to the operation and maintenance phase of the software life

cycle is as a tool for documentation and standards.

Software documentation is a serious and.costly problem for

all organizations. "The DD/DS is one tool which can be used

to overcome these difficulties by automatically producing

#0 documentation about tile database and the system. In this

light, the DT)/l)S should be used routinely to augment current

documentation efforts, and to supplant a large percentage

(60% to 70%) of existing systems and data documentation

requirements. When used in the normal course of

development, the DDIDS can lessen the monotony and

repetitiveness of the task of documenting, and it can assist

in completing the system development effort on time,

delivering an end)ro(Iuc t which is well (ocl i nt d" (15:5). "

A I t ho ugh d o c u m en t a t i on i s a Lask w hi c h s ho u 1(d 1) e done d u r i n

every phase of the life cycle, a lack of good documentation

is disastrous when at t er11)t i ng to 0 perat e and ma i in ta in

software. The data dictionary is also an invaluable aid in

25

determining the effect of a software modification on both

the system and database. Its utilization can help reduce

both the time and money involved in software maintenance.

A data dictionary can aid in the enforcement and use of

standards in an organization's data processing endeavors.

The use of standards can help to promote the sharing of data

resources in a controlled environment. "In the computing

field, especially, the same terminology is often used to

mean different things in different contexts. Thus in some

cases, standards are necessary so that everyone uses the

same data to mean the same thing" (15:52).

Data related standards can be grouped into one of two

types, data definition and data format conformance (ref 15).

"Data definition refers to a standard way of describing

data" (15:51). As an example, a naming standard could

consist of rules or conventionss for assigning names to data

entities. This would allow all users in an enterprise to

know that when a data element is used in programs, reports,

and files that it means the same throughout the

organization.

"Data format conformance is content related. It means

that a data element,in addition to having tle same name

throu-,hout the enterprise, also must conform to a common

set of format rules for the data element to retain the same

meaning. oreover, these must be accepted throughout the

enterprise" (15:51-52). For example, the data element date

26

should have the same format throughout the enterprise and

only that format should be allowed. Another example would

be the use of codes in an organization. If a two letter

code is an accepted representation of a state (ic SC, VA,OIi)

then that code must be accepted by the entire organization

and no other codes should be accepted.

"The DD/DS can failitate the introduction and

enforcement of such standards, via a set of editing rules to

be included in the DD/DS. These editing rules can, in

effect, edit and validate acceptable codes, so that

nonconforming codes are not acceptable. The J)D/DS can be

used as both the promulgator and the enforcer for data

standards" (15:52).

Data Dictionary Will Support Information About

Entities, Relationships, and Attributes.

The data dictionary can be considered a database

whose contents is information about data. The domain of a

data dictionary database consists of entities and their

attributes and relationships. The following definitions

should clarify this concept.

"Entity - any named concept, object, person, event,

process or quantity that is the subject of stored or

collected data.

Relationship - a pre-determined ordering between pairs

of entities.

27

II

• .. . -. , - -.-

Attribute - a property or characteristic of an

entity"(16:8).

A data dictionary entity represents an object, person,

process, etc. It is not the actual data that might exist in

a file or database, but a representation of that data. For

example, the enitity called "social security number" would

not consist of an actual number such as "247-82-4457".

An attribute is a characteristic of an entity. An

attribute for a data dictionary entity could, for example,

be length. In the case of the social security number

entity, the length attribute would be nine.

The relationship between entities indicates the

structure or ordering that exists between different

entities. For example, the entity "Payroll Record" may

contain the entity social security number. Relationships,

like entities, may also possess attributes which describe

their characteristics. Figure 4 graphically illustrates the

entity-attribute-relationship structure.

IM,'ax Length Relationship Entity
400 Characters Created Created
(Attribute) (Attribute) (Attribute)

Payroll Record _ C Contains ocial S.ecurity
(lntity) (~elationship) (__'__tit) yA-(-' I a ! nsit

Intity Created Commen L s 1 Lenr,,t h
820519 (Attribute) '9 Characters .

(Attribute) _ (Attribute) I
Figure 4. Entity, Attribute, iPelationship Structure-

28
..

.

.. -.------..------.-.- - - -

0

"The basic unit in a data dictionary is the entity.

Relationships connect pairs of these entities, and both

entities and relat ionships have attributes ass ined to them"

(16:10).

Entities, relationships, and attributes can be

organized into sets known as types. Attribute-types are

organized so that each menber of a set represents a like

characteristic. A typical attribute type could be "date

created". In a similiar fashion, entities can be organized

into entity-types. All examples of a specific entity-type

would have similar or identical characteristics or

attribute-types. Like entities and attributes,

relationships can be grouped together to for-A relationship-

0 types. Relatioinships which are examples of a particular

relationship-type possess attributes from the collection of

attribute-types associated with that relationship-type.

Examples of relationships are system-contains-program and

record-contains-element.

"These "types" form the basis of the dictionary schema

-- the collection of structures that describe the

dictionary This entity-relationshi)-attribu te

construction used for the d ictionary can b u.;ed to model

the schema as well. Thus the DDS contains a "we mta schema,

or schema descri hi)n the schema (The concept of "'meta" is

defined as data about data. At this "meta'' level, the

three concept s "ent i t v-type", relat j onship-type", a nd

29

6c

...

"attribute-type" are all "recta-entity-types". Instances of

these concepts are "meta-entities which are conceptually

connected by "meta-relationships". "Ieta-attribuLes" can be

associated with both the "meta-entities" and the "meta-

relationships" " (16:12). Figure 5 gives examples of

entries at each level.

SCHIEHA HODEL LEVEL SCIIHA LEVEL DICTIONARY LEVELS

Typical MetaEntity Typical Entity- Typical Entities
Types Types, Relationships,

Relationship- and Attributes
Types, and
Attribute Types

Element Social Security
Nu m 1) e r
Agency Name

to Entity Type Record Employee Record
Payroll Record

Document Fo r m 1040

RelationshipType Record-Contains l'ayro 11-1,ecord
Element Contain-

mp loyee - 1 a me

Attribute-Type Length 9 Characters

Creator A DP 1)ivision

Figure 5. Examples 0 f Entity, Ielat ionship, attribute
Contructs

The Data Dictionary Will Sujnort Data, Process, and A

User Entity 1 , .e

Data entities are a class of entities that describe or

30

... •-......-................ .-.. . .

00
*represent objects that are units or data or aggregates of

data. The following list contains some specific classes of

data-entity-types.

1. Element - describes instances of data belonging to

an organization (Examples: social security number and

agency name).

2. Document - describes instances of human readable

data collections (Example: Form 1040).

3. Record - describes instances of logically

associated data (Examples: Employee Record and Payroll

Record).

4. File - describes instances of an organization's

data collections (Examples: roster and accounts

to receivable). (16:14)

Process entities are a class of entities that represent

processes and components that exist as part of the data

processing environment. The following list contains some

specific classes of process-entity-types.

1. System - A collection of programs (and indirectly

modules) that can be associated with major functions of the

organization (Exaimples: Personnel Syst tem andS1) 1)pply System).

2. Hodule - A collection of processab~e code which is

called by one or more programs and which may, in turn, call

one or more other modules (Example: Sort Records).

3. Program - Describes instances of automated

31

L ° - . " -(.& : 2 § *2 b

processes (Example: roster update). (11:2.8-2.9)

User-entity-types describe members belonging to

an organization who are responsible for data in the data

dictionary. A uscane entity can be a person, organization,

terminal, or office.

The Data Dictionary Will Suport the Following Classes

of Relationship-Type : Contains, Processes, Responsible-

For, To, and Derived From.

The contains class of relationship-types describes

instances of an entity being composed of other entities. "A

typical CONTAINS relationship-type is RECORD-CONTAINS-

ELEMENT, which has as a possible instance the relationship

"Payroll-record-contains-employee-name"." (16:15)

The process class of relationship-types represents an

association between data and process entity-types. "A

typical PROCESSES relationship-type is SYSTUI-P, OCLSSES-

FILE, which has as a possible instance the relationship

"budget-systema-processes-cost-center-file"." (16:15)

Associations between entities representing

organizational components and other entities denoting

organizational responsibilities are described by the

responsible-for class of relationship entities. "A typical

RESPONSlBLE-FOR relationship-type is USE1',-- R ESO,'!S 1 llLi -FO R-

DOCUMENT, which has as a possible insLance the relationship

"personnel-off ice-responsible-for-SF-171" ."(16: 16)

.. . To describe associations between user a ~d process

32

..,. •

entity-types, the runs class of relationship-types is used.

It illustrates that a person or organization is responsible

for running a certain process. "A typical RUNS

relationship-type is US ill-,1u:; 1INOG 1,AII, w.hich has as a

possible instance the relationship "John-Doe-runs-system-

backup"." (16:16)

The to c Ias of rel at i onsh i p- L y pes describes flow

associations between process entity types. "A typical TO

relationship-typL e i.s 0',OIJU 1,-'T'O - ;1) UhL , which has as a

possible instance the relationship "ia in-program-to-sort-

routine," (indicating flow of control or data within a

program)" (10:16).

The derived-from class of relationship-types describes

associations between entities where. the target entity is the

result of a calculation involving a source cntity. "A

typical DERIVED-IFOMI relationship-type is DOC[IE NT-)EPIVLD-

FROl-FILE, which has as a possible instance "annual-report-

derived-f rom-plans-f e" . " (16 : 16)

The Data Dictionary Should Su.j)ort an Attribute-Type

Which Indicates Software Life Cycle Phase of the Entity or

Relationship Being Addressed.

The data dictionary ,enerat i on tool W i I I be ued to

support all phases of software development from requirements

definition to operotions and maintenance. To effectively

perform its functions, the data dictionary must possess a

33

0-7

means of determining the stage of development of the data

and process descriptions it supports. This facility will

help the designer keep better track as to the status of the

project and will allow a means of tracing the evolution of a

project component through the various development phases.

User Friendliness.

The data dictionary generation tool will be required

to interact with the user in order to obtain complete

descriptions for thc data dictionary concerning tile

processes and data illustrated on the software

representations. The user will also interact with the data

dictionary when obtaining information about its contents.

Failure to establish a freindly user interface which

enhances communication could lead to the data dictionary

containing erroneous or misleadino information about the

system's data and process entities.

The Data Dictionar5, Should Suport User Defined

Attributes.

The data dictionary will support a set of standard

attributes in describing data and processes. However, by

allowing the u-;e r to creatc his own attribute, the

flexibility of the system will be greatly improved.

Error Checking.

h'hen the tool extracts data dicitonary information from

a software representation, it should check for errors in the

34

i ~~~~~~~~~~~~~~~~~.....-.-... ::-:.-..i..."...-...-...-.-..........'......... ,....V.V- '........-.-'
k . -~ t_.-.. u =2. "E " " .. . - i .b. ._.

0
-. _ -. ' -" - - 2-- "!.. _ .___ "-- "_ _ '_ -Z". '._._•_..''

representation and bring them to the attention of the user.

Errors in format or meaning in the software representation

could lead to the processing of erroneous or unclear

descriptions in the data dictionary.

The Data Dictionary Generation Tool Should _ capable

of Interpreting the Contents of Several Different Software

Representations.

There are currently numerous techniques and

methodologies available for supporting software development.

For the tool to be useful it must be capable of working with

more than one of these techniques. Also it is not unusual

for a single software project to employ more than one of

these techniques in the course of software development.

Provide Support for The Information System Planning.-.

Host information systems must undergo continual change

and modification in order to support the changing needs of

the user. These changes and modifications are more

efficiently controlled and implemented if a system's

planning activity takes place. "The purpose of this planning;

activity is to determine the feasibility and the technical

and economic trade-of f,; for a planned sysLtem, based on an

assessment of the current environent and an ann Lysis of

current use and future requirements" (15:27).

The data dictionary system is an invaluable tool in

supporting this planning activity. Information system

35

planning requires an initi1l assessment of the current

environment. This assessment helps the planner to determine

the data that is available and to analize information

requirements. "These activities... are used in determinin-

the data needed to produce an information product, the data

that is already available, the potential conflicts and

redundancies, the impact on existing systems, and the

potential users of the system" (15:28). The data dictionary

supports this activity by recording and coordinating

information needs from various members of the organization.

In performing the system's planning activity, it is

important for the planner to analyze current usage and

determine future requirements. To accomplish this task the

system planner must understand how information is actually

used to perform specific functions, how data entities are

related to both each other and other system components, arid

the dependencies of the data on other entities and

processes.

Hany of the tasks associated with system planning

activities are time consuming, tedious, and prone to error

when performed mranuually . "With tile aid of an automated

tooI, such as the MUDS, the task; may be simpt itid , -

reliability may be increased, and con si stency may be

maintained, while facil itating coordiriation of these "

planning activities" (15:28).

0 The data dictionary system is an effective tool for

36

. - ..-. .-.

information system planning. "it provides coordinated and

consistent functional support for documenting the plan and

its subsequent use as a control mechanism over development

and operation since the DD/DS contains data about the

enterprise's operational data, that is, it is an inventory

of currently available data. Further, the DD/DS contains

information about how the data is used, its relationship to

other data entities, occurrences, dependencies, and

constraints. Thus with a DD/DS fully operational, its use

during the planning phase can increase control over

developmental and operational aspects of the organization"

(15:29).

P Data Dictionary System Should ContaiD a_ Securi jy

Feature for The Protection of The Informations 1-t Possesses.

The security of information is a concern when

designing the data dictionary generation tool. Two reasons

for this concern are:

"1. The dictionary database represents a complete

inventory of the enterprise's processing system. An

intelligcnt decision on anyone's part intent on

accessing the enterprise database in an authorized

manner would be to first peruse the contents of the

dictionary database.

2. The basic concept of a data dicitonary system

includes the idea of a central repository of. data, the

37

dictionary databasc, which is considered to have a high

degree of reliability and the confidence of the database

users. As such, precautions should be taken to assure

that unauthorized alterations, cither accidental or

intentional, will be prevented" (11:2-20).

A security facility for z data dictionary system should

not simply restrict access to data dictionary infornation,

but should differentiate between creating, reading,

altering, and destroying existing data dictionary entities.

"In the final count it must be considered that the security

of the data dictionary systei. is related to the security of

the entire computer system. The level of security existing

oO there is influenced by the security of the installation, as

well as the procedures used by the personnel of the

enterprise" (11:2-21).

Th_e Data Dictionary System Should Provide Both

Reporting and Interr atin iacilities For Use By the User

and Dictionary Administrator.

The benefits derived from the use of a data

dictionary system are directly related to the quantity and

the quality of the data the dictionarv ditabase contain. s
S

about the information sys;tei. 'Fhe usefulness of the system

is also related to the reports generated and the flexibility

with which the database can be interrogated in response to
II

specific questions.

38

.

"rhe major categories of reports on the contents of tile

dictionary database are:"

I. Listings of all dictionary entities of a given

type, i.e., items, groups, etc. Such listings will in

general contain some attributes for each entity.

2. Listings of all attributes for a specified

entity of any type. Such listings may be limited

essentially to the attributes placed in the dictionary

database, or they may also contain data about all or

selected dictionary entities which have a logical

relationship to the specified item.

3. Usage reports show either the manner in which a

given entity is used by other entities, or to which

other entities use a given entity. The manner in which

such reports are provided may vary in that only one

level of usage may be included, i.e., from file to group

or vice versa, or that all levels of the hierarchy may

be included in the report. In the former case this

facility must be invoked multiple times to obtain the

same results.

4. A key-word-in-context or key-word-out-of-

context facility that can be used to search specifies

attributes for -iven key word. A facility of this

nature can be useful in view of the fact that the

previously (escribe(reports all ow only the use of a

39
.h..

, . . .:

limited number of attributes as search arguments. A

simple example of the use of the use of such a facility

might be to query the dictionary database for a listing

of all programs written in COBOL.

5. Some systems provide specialized programmer

interfaces at which the dictionary database is made

available in a prescribed format. Under such

circumstances, it is then possible for an installation

to provide extensions to the reporting facilities

available" (11:2-14).

Functional Model For The Data Dictionary Generation Tool

U. With a list of concerns and objectives developed, 4

sufficient background has been established to develop the

defintion of the functional requirements for the Data

Dictionary Generation Tool. This task is accomplished by

formulating a functional model which defines and describes

the tool's functional requirei-ents.

A variety of techniques and methods are available for

defining system requirements. From among these, the Data

Flow Diagramn technique was selected to define the

requirements's for the Data Dictionary Generation Tool.

Data Flow Diagrams are especially useful in defining

the requirements for software systems which contain a

complex and varied array of data flows. The Data Dictionary

40

Generation Tool is this type of system. i;Ccause of the

intricate data f Iow's assoc iatod with the tool, the Data Flow

Diagram is an excel lent technique for defining the

requirements for the Data Dictionary Generation tool.

The following figures and sections display and explain

the Data Flow Diagra;is associated with the higher levels of

the functional model. The diagrams for the entire Data

Dictionary Generation Tool functional model are presented in

appendix A.

Data Dictionary Generation Tool Functional Model: IjQ

Level.

The top level of the Data Dictionary Generation Tool

functional model is displayed in figure 6.

IllUser Input---- _# User Hlessa.,e

Software Data Dictionar Data Dictionary
Representation Information Information

Figure 6. Top Level Data Dictionary Generation Tool.

This top level diagram represents a vague and abstract idea

for the software system. The Obtain and Use Data Dictionarv

Information operation is the process of extracting data

dictionary information from the tool users and various

software representation such as SADT, Sturcture Chart, etc

and using this information to support the development of

software in each phase of the life cycle.

41

Ii

Software User User User
iepresentat ions Iessages Inputs Iessa2eS

-A

enert e r for m
i r -Dictionary

SotaeDictionary 1 .2
Inputs

Da ta
)i c t i on a r y
1 n for ma t i on

Figure 7. Obtain and Use Data Dictionary Information

Obtain an Use Data Dictionary Infori.iation

S Figure 7 displays the initial decomposition of the top

level of the functional model. This decomposition shows the

two primary functions or components of tile Data D)ictionary

Generation Tool. The Generate Dictionary Inputs From

Software Representations operation represents that portion

of the tool which interprets automatically the information

content and of various software representations and converts

this information into data dictionary inputs. This

operation requires user input to obtain data dictionary

information which m.Iight not be portrayed on a software

representation. The ierform Dictionarv 1unct ions operation

consists of those tP.JI.sk which maintain the data dictionary

information. This operation also supports the tool user by

providing a menazs by which int or ;ation in the data

dictionary can be retrieved, (I eted, added, and mod.fied

42

"' '-.' . .'"- .-'- - -i' .. ". .'. . . ."- - .". ' "...... " ..-.F - ."" " - ' .

User Input Err-or 111e.,sage

kepresentation Analyze

'cpresentati oi '~.

I Incomplete
Dicti onary

I nput

User dCesponsC

To Prompts Prompts To
- -, U se r

0 1) a i 1 A .rror iiC5sfl',CS

Di c tion ar v
I nformat f Lion

From~ User
1.1 .2

* .- ! aw Dictionary !In try

Dictionary
Lntry

1.1.3
Fori-natted Dictionary Entry

Add Lntr\
Ton Dictionary

Database
1 .1.4 Dictionary

inputs

F u r e I. I. GeneratLe D)i ct ionnry I inp)uts Fro m S o ftw are
Se p rCseCn Ca ti ons

Generate Dic t ionary t'Inpi L 1 P00~ So01.1. are C I setat ion s

-iirr 6e r s n a n i

DictLi onary In p ut s [r o S 'o f Ltwar epenL in operato

in to i ts c 0)oponen11t 11 n c Lions 1Sn i Li ilIy, th e s ulbj0.c L

s of t ware ro1reps n LatLio C 1i s an11ai.y Ze d a nd(the C (lat- (di cti onIar y

43

information available is obtained. Information not depicted

in the software representation is obtained from the tool

user by means of the tool displaying prompts to the user and

the user responding to the prompts. The information

obtained both automatically from the software representation

and interactively from the tool user form constitute the

unformatted dictionary entry. This information is then

formatted and added to the dictionary database, which

maintains all data dictionary information.

User Input -Error Nessages

Determi ne
D ict ion a ry

lu n c t i 0 1
\1.2.1/

. -.. unction Selection
N4

User Input Dictionary
Administrator

/
In puts "

Interact
111

.

I., t \ /Perform

DictionaryDictionary
Schemain ai s t rato
1.2.2 nc t ions

1 2.4

Schema Information - -

Changes To Schema

lnteract

User Input _____ Dic t ionaI Chang5es
D. "aae To Database
1 .2.3

. Dictionary
Content
Informa t ion

Figure 9. Perform Dictionary Functions

44

.. °

- -.. -

Perform Dictionary Functions.

Figure 9 displays the decomposition of tile Perform

Dictionary Functions operation into its component functions.

The functions portrayed in figure 9 represent the functions

the tool user can request from the data dictionary.

Operation 1.2.1, Determine Dictionary Functions, determines

and selects the function the tool user has indicated he or

she would like to periorm. Errors in user input are also

checked by this operation and error messages displayed

Operation 1.2.2, Interact With Dictionary Schema, allo:s the

user to obain information about the structure of the

dictionary and to, if desired, modify that structure.

Operation 1.2.3, Interact With Dictionary Database, allows

the user access to the data dictionary information

maintained in the dictionary database. Operation- 1.2.4,

Perform Dictionary Administrative Functions, performs tasks

essential to the maintenance of the tool such as security

and storage scheme selection.

Evaluation Criteria

In order to measure the success of the Data Dictionary

Generation Tool in meeting its require;ents, a set of

evaluation criteria must be estbl ished . There are several

parmeters wh ich can he used to 0aUge to ,;uccess, of the)ata

Dictionary Generation Tool.

The first is the average time spent in learning to use

the tool. This parameter uill vary froa individual to

45

E6

individual. However, the aimount of time required for the

average user should be minimal, probably in the range from

two to four hours.

Another evaluation parameter, closely related to the

amount of time required to learn the use of the tool, is the

degree of user friendliness the system provides its users.

The Data Dictionary Generation Tool is a highly interactive

tool whose successful operation is heavily dependent upon

the inputs supplied by the tool's users. The user

friendliness demonstrated by the tool should be high.

However the degree of user friendliness is a subjective and

extremely difficult parameter to measure.

System responsiveness is another evaluation parameter

which should be considered. As stated above, the Data

Dictionary Generation Tool is a highly interactive tool

requiring substantial communication between the tool and the

user. If the tool's response time to user inputs is slow,

it will cause user frustration and dissatifaction. A

slow response time will decrease the advantages of the tool

in comparision to manual generation of data dictionary

infornation.

The most important parameter by which the Data

Dictionary Generation Tool should bc measured is how

accurately it maintains data dictionary information. If

the tool allows errors or contributes to errors in data

dictionary information it usefulness is questionable.

46

. .. -*. .

IIJ. ~reliminar Design

Introduction

Preliminary Design refers to the software development

stage during which the functional framework of the software

system is determined. The purpose of Preliminary Design

then is to establish the functional framework or structure

which will reflect the system objectives or requirements

specified during the Pequirement's Definition Phase of

software development. Within this framework or structure

the algorithms for the software system are integrated.

Without this structure, the associated algorithms would

probably not be able to support the objectives of the
40

software system. Therefore, the main purpose of Preliminary

Design is to provide a sound framework for the softw:are

system.

In developing the Preliminary Design for a software

system, the software engineer will seek to establish a

hierarchial framiework of managerial and functional modules.

The framework begins with a single executive module at the

top of the structure which can call or use other modules

within the software system. These nodules may also call or

use other modules. Sonic modules perform the task of

managing lower level modules while other modules perform the

actual functions required to support the objectives of the

software system. The modules constituting this hicrarchial

47

0

framework are linked together by their abililty to call or

use one another. These , 1oduIes may pass data, control and

status information back and forth between each other.

The Prelininary Design for the Data Dictionary

Generation Tool will be involved with establishing the

functional structure for the software system. This chapter

will also discuss a design strategy for the data dictionary

generation tool. This tool is envisioned as a dynamic tool

which will be able to evolve to accomodate new software

development methods and t heir acconpanyin g, software

representations. This design objective i.ill be used in the

initial design of the tool. The dictionary database design

will be discussed at length. The database which maintains

the data dictionary information is an essential element of

the Data Dictionary Generation Tool. For that reason, the

design of the dictionary database is an important issue in

the overall preliminary design of the tool. 'fhe development

of the structure of the software system will be discussed

and structure charts will be used to provide a graphical

representation of the hierarchial framework of the system.

The Preliminary Design chapter will conclude with a

discussion of how the preliminary desipn of the system

satisfies the objectives and concerns expressed in the

Requirements Definition Chapter.

48

-.. -, < . . -. -. - - . . - - . --.- , ' .-.-., -. - -,- . .-.- . - -- ," - -'.-., ". ...

Design Strategy

The Data Dictionary Generation Tool is envisioned as a

dynamic tool capable of supporting the entire software

development life cycle. To accomplish this goal, the tool

must be capable of expanding to accomodate the wide variety

of software representations available to the software

designers. The design strategy for this tool must be

capable of not only supporting existing software

representations such as SADTs, data flow diagrams, structure

charts, etc but must also possesss the flexibility to

accomodate software representations which may be developed

in the future. Of course, it is impossible to guarentce

that any design strategy will be able to accomodate a

unknown software engineering development. However, by

providing a well defined and logical design strategy, the

flexibility of the tool in supporting new software

representation is greatly enhanced.

The initial step in the design strategy is to gain a

thorough understanding of the software representation in

question. A software representation is important in the

software development process because it provides information

about the software system under development. The type and

quantity of information provided by a particular software

representation technique wi.ill depend upon the nature of the

representation. For example, data f low diagrams provide

information about the activities which form a software

49

_S

system and the data inputs and outputs of these activities.

Data flow diagrams also depict the flow of data between the

various activities which constitute the software system.

SADTs, on the other hand, not only depict the flow of data

into, out of, and btween activities, but also allows for a

data flow to be classified as a control data input for an

activity. SADIs also provide the necessary conventions for

designating a mechanisms or the means by which an activity

performs a function. As the above examplc indicates, a

thorough understanding of the nature of the software

representation is essential.

The next step in the design strategy is to determine

the information content of the data dictionary for a given

software representation. A data dictionary is a repository

of data about data. The software representation -contains

information about the software system it describes. The

contents of the data dictionary for a software

representation will to a large extent be driven by the

nature of the representation. For example, a data

dictionary entry supporting a SADT representation of a

software system would contain information about control data

and mechanisms. This information would not be included in a

data dictionary entry supporting a data flow diagram or

structure chart representation. When determining data

dictionary content, it is important not to let the

information content bc limited to just the information

50

S

contained in the software representation. If the tool user

possesses additional information of value, it should also be

included. For example, it is not possible to determine the

data type (ie, character, integer,) from a data f lo w

diagram, SADT, or struucture chart. However, if the system

has reached a level of development where the user has

knowledge of the data type of a particular data element it

should be included in the data dictionary.

Once the information requirements for the data

dictionary have been determined, the initial design of the

dictionary database can be accomplished. In designing the

dictionary database, an important point should be kept in

mind. Although the differences in information content of

the various software representations does exist, there is

also a great deal of commonality between the software

representations. For example, SADTs, data flow diagrams,

structure charts, and code all depict the flow of data

elements into, out of, and between activities. Where

possible this commonality should be exploited in designing

the data dictionary database. However, valuable information

which may exist in only one particular type of

representation should not be sacrificed for the s;ake of

maintainin -, com1onaIi ty. TIi s point will be f urther

clar if ied when the database design for the data dictionary

database is discussed later in this chapter. The objectives

of the initial database design should be to structure the

51

database in a manner which reduces redundancy but maintains

traceability and consistency.

With the initial database design accomplished, the next

step in the design strategy is to designate the user's view

of the database information. The user's view, when used in

this context, indicates the manner in which the user

interacts with the data dictionary system. In this step,

the manner in which the user is presented with database

information and the manner in which the user can manipulate

database information are defined. The user will as a

minimun want to be able to retrieve, insert, delete, and

modify the data dictionary contents. The definition of the

user's view will also determine the format in which a user

will obtain data dictionary information. For example, if

the 'ser desires to know the input data for a particular

act vity , the view would define the format in which that

piece of data dictionary information would be presented. 4

The presentation could consist of the exact data element

nai.ies of all inputs to the desired activity or it could be

in the form of an activity definition which included the the

names of all input data along with other information about

the activity. The most important point to remember in

definin,,, the user's view of the dictionary database is to

attempt to present the information in a manner which most

effectively supports the user's needs.

The userls view represents the manner in which the user

52
5 'I]

desires to manipulate or use the dictionary database. The

database design represents the manner in which the

information is conceptually maintained. In order to allow

the user to perform data dictionary functions, application

software is required to connect the user view and the

dictionary database. Te application software represents

the dictionary portion of the data dictionary generation

tool. The actual implementation of the dictionary portion

of the tool will be heavily depcndent upon particular method

used to maintain the database and the level of user

friendliness the system must support. For example, the

IIdatabase could be designed along either the network,

relational, or hierarchial approach. The user might be

i required to have technical knowledge of the database

management system used to maintain the database in order to

manipulate the dictionary information or a user friendly -

menu driven interface which required no technical knowledge

could be provided.

The development of the application software to connect

the desired user's view with the dictionary database should

follow the software development life cycle approach. The

specification of the user's view and the i ni tial database

design will provide an excellent foundation for forMulating

the requirements definitions for the dictionary software.

Iith the development of the dictionary software, the

dictionary portion of the tool is complete. Tie information

53
5p ..

: =.- .'- ' -J,_.'.-J-.'-2-_,-. ..- ..-.................'....'................-.-..-.-.-'...-..'.....".-...."..".'......-.".-...-......."....-."...'...-,-'.....

contained in a software representation along with other

necessary data dictionary inlormation is maintained in the

dictionary database. A dictionary user can perform the

necessary interactions with the database by specifying

his/her desires through the user view. The application

softw:are will connect the user's view with the database and

enable the user to perform the desired operation. The

automatic information extraction portion of tile data

dictionary generation tool can now be addressed.

The initial step in developing this portion of the tool

is to determine for a specific software representation which

portions of a data dictionary entry fo that representation

can be determined directly from the representation and what

Sinformation must be provided by the user. iith this

determination made, the basic requirements for this-portion

of the software system have been identified. In order to

obtain data dictionary information from the software

representation, the softwivre system must access and

interpret the contents of the representation. The system

software must then extract the data dictionary information

and convert it into a form suitable for insertion into the

data dictionary database. The software system must

communicate interactively with the user in order to obtain

data dictionary information uhich can not he derived from

the software representation.

The design strategy presented here is intended to

54

............................... -.. . . .
-' A, . , - -- . . '- ' . ..' f q _ ' _ ' " , - ' - , , - . . - - - . - • .' . - . -. .%

provide an approach to follow in expanding the tool to

accommodate new software representations and their

associated data dictionary information. The following 4

sections in this chapter will be concerned with developing

the database and applications software for the initial set

of software representation to be supported.

Data Dictionary Information Content

The Preliminary Design of the Data Dictionary

Generation Tool will attempt to support four different types

of software representations and their associated data

dictionary information. The software representations to be

supported are SADTs, structure charts, data flow diagrams

and code. SADTs,data flow diagrams, and structure charts

have been described earlier in this paper. The code

software representation is the actual source code which

makes up the software system in question. This

representation is formulated during the implementation phase

of the software life cycle. These four software

representation were selected because of their widespread use

in the Defense Community.

When discussing the dictionary content for each of

these software rep)resentations, it is useful to consider the

information for the data dictionary as being in one of tw,'o

categories. The first category is actions, which contains

all information elements about the various ILunctional or

55

2 -7:

... "--

manaocrial inodules which male up the system. The second

information category, data, represents the infornation which

the action modules use or mani pulate in performing their

various functions. Both categories of information contain

elements which relate data and actions to each other. For

example, action information would identify the data inputs

and outputs of a functional module. Data information, on

the other hand, would identify the action modules which used

or manipulated a particular data item.

Because of this categorization of information within

each software representation, the data dictionary

information desired for each representation will be

discussed from both a action entry and data entry point of

view. The discussion of the informaton content of both the*0
action and data portions of the software representation will

show that a large degree of commonality exists betwcen the

various representations. In addition, a large degree of

commonality will also be scn btwen the action and data

information content. The complete I i;ti n'; of each

representation's action and data information elements is

presented in figures 10 and 11.

In discu ssinl' the var io us inIoriation eII:int that

make u p the da L d i. ct ion a r y c on teii t f or t h e va r i ou s

software repre-;entat ion!:, tho:;e clemcnt,; w hich a r corl;ion..

across the range of the three representat ions and thos-e - -.e

which are also coss.on among, the data and action information

-0

categories for all representations will be discussed first.

The following paragraphs will describe each of these

information elements and explain its meaning or value as

data dictionary information. It is important to remembcr

that these information elements are present in both the data

and action information categories in all three software

representations under consideration.

Project.

The project information element identifies a group of

software developers who arc responsible for entry of

information into the dictionary database. 'Ae project

.0
identifier is important because it allows more than one

group to be working on the same software project at the same

time. The designation allows different groups to use the

same dictionary database without having to be concerned

about interferring with the work of another group. This

capability is especially important when the the data

dictionary is being used to support a large software

development effort,

- Name

N ame is tie tit.Ic given to the acitvity or data

element represelted in the d ictionary database. The name

element a soc i at ed w i t h an act i on or da La element sho, I(d be

unique in that no other data clement. or action should Ihave

the same name. The name inforiation element should, to the

extent possible, dc,';cribe tile data element or activity it

57

,...

represents.

'ADT Data Flow Diagram Sructure Chart Code

Project Project Project Projec t
Number ,umber 11umber Number
Name N ame Name Anaie
Inputs Inputs Inputs Inputs
Outputs Outputs Outputs Outputs

Conrols
,1 echani sms
Description Description Description Description
Reference Reference Reference Reference

Alias Alias Alias Alias
Input Flags
Output Flags
Global Data Global Data
Used I' aead
Global Data Global Data
Changed :ri te
Algorithm Algorithm

Parent Node Parent Node Parent Node

Child Nodes Child odes Child Nodes
Called Iy Called By

Calls Calls
liardware liardv:are

@Read lRead
ardare !lardware

Irit ten Uri tten

F Program
Lang u age

Date Date Date Date

Originated Originated Orisinated Ori,,,, inasted
Origina 1 0riginal Original Ori gi nal
Author Author Author Author
lodify Miodify odify 1odifv"
Date Date D)ate Date
1iodify I odify iodifv iodi fy
Versions Versions Versions Versions

Figure 10. So f t a re lepresen tat i ons Action iLn t it y

Inforration Elt eomoents.

Descri ption.

T he descri pt i on i n f or;,a t ion e I ement i s a t ex t in 1 t t-"

wlhich describe.; an activity or data eleient conLained in the

......................- i .. ." •.v,...v........ '....'- .)(.-'...-...<,. -. - .. '

data dictionary. The description is the developers attempt

to define the function or purpose of an activity or the

nature of a data clement.

SADT Data Flow Diagram Structure Chart 77oe
Project Project Project Project

Name N ame Name N'a m e
Description Description Description Description
Sources Sources Passed From Passed From
Destination Dstination Passed To Passed To
Composition Composition Composition Composition
Part Of Part Of Part Of Part Of
Data Type Data Type Data Type Data Type

in Value Hin Value iin Value !il Value
,ax Value Ilax Value lax Value aiax Value
Valule Set Value Set Value Set Value Set

Alias Alias Alias Alias

Storage Storage
Type Type

Reference Reference Reference Reference
Original Original Original Original
Date Date Date Date
Original Original Original Original
Author Author Author Author
Modify iModify Miodify M1odify
Date Date Date Date
Modify 1odify Modify M1odify
Author Author Author Author

Figure 11. Software Representation Data Information
f" 1 el t s

Aliases.
jl

0
An alias, when used in a data dictionary context, is

another name for an existing activity or data element. The

use of an at Ia can cause confusion in both the data

dictionary and software system development. Their use

should be avoided whenever possible.

The remaining; five information elements which are .

common to both the data and action information elements of

59

,.

the three software representations under consideration are

concerned with maintaining a historical record of the data

element or activity they describe. The date originated and

original author information elements identify the time and

person or group that initially entered a data element or

activity into the dictionary database. In a similar

fashion, the modification date and modification author

identify the time and person who made a change in the

associated data or action entry. The version information

element identifies each modification made by indicating its

0 sequence. For example, the initial entry- of an activity or

data element would be identified as version 1 while the

first modification to the initial entry would be designated

* * as version 2.

The next group of data dictionary information elements

discussed will be those data information elements which are

common among the three software representations. The first

four of these elements seek to describe the actual value

which will be associated with the data element.

Data T e_._•

The data type information element describes the basic

characteristics of the values associated with a data

element. For example, if the data element value was either

true or false then the associated data type would be

boolean. In a similar fashion, if the value was always a

number the data type could be, depend in on the nature of

60

.. :: -

the number, either integer or real.

The ,in Value and ,lax Value.

The min value and max value information elements

describc the highest and lowest values the data element can

represent. If the possible values for the data element

order were whole numbers between 1 and 10, the min value for

data element order would be 1 arid the max value would be 10.

Value Set.

The value set information element is used w;hen a data

element can only assume a limited number of values. For

example, if due to the nature of the software system the

data element could only assume three values: high, low, or

medium, then the value set for the data element would

contain each of these three values.

It is important to note that a data element will not

always have a value set, min value, or max value information

element associated with it. However, these information

elements do provide valuable information in certain

situations.

Composition and Part Of.

The compositon and part of data information elements

provide data di ictionary iniformation about the make up of a

data element and it relationship to other data elements.

For example, the data element cmployee salary cou .d be

considered as part of the data element employee pay. In a

similar fashion, employee pay is composed of employee salary

61

z..
, - ..

-°-K5 "

as well as other data elements such as employee social

security number or employee name.

Sources, Destinations, Passed From, and Passed To.

The source, destination, passed from, and passed to

data information elements describe the flow of data into,

out of, and between the various functional and managerial

modules which make up the software system. Although these
data elements are common in all three data portions of the

software representations, there is a naming inconsistency

which could lead to confusion. The SADT representation

calls activities which output data elements sources and

activities which accept or input data elements as

destinations. Structure charts and code, on the other hand,

to designate activities outputtin- data elements as passed fron

and activities inputting data elements as passed to. The

use of different terminology is not important because the

meaning the information elements are the same in all three

representations.

The next three data information elements discussed:

requirements d, SADT data element, and SC parameter, provide

a trace capabiltily between the three representations and

more importantly a reference between the various stages of

software development.

Requirement .

The requirement h data information element is used to

62

t2 i.

reference a data element used in the SADT representation to

a previously defined requirement. This requirement

represents a stated objective or goal of the system which

was formulated by tile system developer and/or system user.

The use of this information element identifies a system

requirement which the subject data element is intended to

help resolve. Linking system requirements to a SADT data

element is appropriate because the SADT representation is

widely used in the requirements definition phase of the

sotware lifecycle.

SADT Da ta It e m.

The SADT data item information element relates data

elements used in the structure chart representation to a

data element uscd in the SADT representation. The

relationship between these two representations is

appropriate. The hierarchial structure in the structure

chart representation makes it a valuable tool in the design

phase of software development. The link between these two

representations allow's for a tracing of data elements as

they develope from the requirements phase to the design

phase.

SC Parameter.

The SC parameter data informat Lon eleicnt relates the

actual data element or variable used in the code

representation to the correspondi ng data elements or

parameters used in the structure chart representation. The

63

-i: ,..,..,. .. _. . _.. - _.. _. - . . . , . , ,. - . . .

information element allows for the linking of information in

implementation phase, represented by the code

representation, to corresponding information in the design

phase, represented by the structure chart representation.

The value of the trace data information elements is

especially valuable in the error correction and modification

of software systems. For example, if an error is detected

during the implementation phase the error can he traced back

through the design and requirements phases. This will help

to ensure that the error is removed completely from the

system and enhances the designers abiltiy to track software

problems to their source. Uhen a modification to a software

system is proposed, it is extremely valuable to be alble to

determine the overall effect of the modification on the

entire system. By tracing the effected data elements

through all phases of development, the designer can better

determine the influence, both positive and negative, that a

modification will have on the system.

Storage -

Tihe final data information element to be discussed is

storage type. ThiS information element is common to the

structure chart and code software representations. The SADT-

representation does not contain this information clement.

Storage type represents a classification of the data element

as it is viewed or used by the software system. There are -.

two classifications associated with this information

64

. .-. .. .

element: passed and global. The global classification

indicates that the data element value can be both accessed

and changed by any portion of tile software system. It is

known throughout the system and can be used or changed by

any functional module in the system. The passed

classification indicates that the data element is only known

in a portion of the system and for its value to be either

used or change requires that the data elements value and

type be passed or sent to other portions of the system.

This completes our discussion of the information

elements associated with the data portions of the software
10

representations. The action information elements will now
LI

be discussed. As before, the action information elements

_-which are common among tile four representations will be

discussed first.

Inputs, Outputs, InpEut Data, and Output DaLa.

The inputs outputs, input data, and output action

information elements identify the data elements whic h a

action or activity uses or produces in performing its

function. As the names indicate, the action takes tile input

data and uses or manipulates it. The results of the

activity are the output data which flows or is pas,;ed out of

an activity. The SADT, DiDs, and code representations

designate the data elements associated with an activity as

inputs and outputs. Structure charts, on the other hand,

65

,... ,.. .

use the naming convention input data and output data. SADT

representations use another iinput data designation known as

control which is not present in the structure chart and code

representations. This information elerment will be discussed

later in this section.

.Parent Node, Children 1Qodes, Called dy, and CIts.

The parent node, children nodes, called by, and calls

action information elements depict the composition or make

up of an action. Parent node and children node are terms

used in the SAU'f representation to depict the logical

decomposition of an activity into its component parts or

children. For example, the activity Find Average could be

considered as a parent node with the children nodes Read

Entry, Add To Sum, Divide By N umber of Entries. The

structure chart and code representations use the terms calls

and called by to depict the composition of act:ivities. The

term call is normally associated with the use of an activity

by another activity. This meaning is slightly different

from the parent/children scheme used in SADT. Although this

difference does exist, both sets of terms still depict a

composition relationship and contain sufficient commonality

to be grouped together.

Requirem nt IQ , 2jKDj' !i, and SC #.

The requirement I, SA DT<, and SC , action information

elements provide a tracc caability between actions depicted

in the three representations and the requirements, dcsign,

66

S

and implementation phases of software development. These

information elements serve the same purpose for the software

system's actions as the requirements #, SADT data item, and

SC parameter information elements did for a software

system's data elements. This completes our discussion of

the action information elements which are common among the

three software representations.

The next two action information elements

discussed,controls and mechanisms, are only present in the

action information for the SADT representation. ihe control

action information element is depicted as an input to an

SADT activity. The control information element identifies

input data flows which an activity uses to control its

execution. For example, a control input could be used to ..

determine the flow of execution inside the activity. The

mechanism action information element is also depicted as an

input into an activity in the SADT representation. A

mechanism represents the means by which an aclivity performs

its functions.

The discussion of mechanisms and controls completes the

discussion of inforation elements, both action and data,

for the SAD' represerntation. wn ill iow: turn our attention

ha c k to tihe action i [iiior 8t i on oele i C III C t a d (I i s c 11-; those

elements which are coimon in both the -tructure chart and

code representations.

Global Data Used, Global ata Chaii d , Global Data

67

,cad, and Global Dara Uritten.

As discussed earlier, global data refers to data

elements which can be both accessed and changed by any

activity or module in the software system. U'hile global data

elements are extremely handy in developing software, they do

present an opportunity for introducing serious errors into

the system due to their easy access. The action information

elements global data used and global data changed depict the

effect an action or module has on a global data element in

the structure chart representation. The action information

elements global data read and global data written perform

tle same function in the code representation.

A lgor i thk.

The algorithm action information element is a text

dscription of the method or manner in which an actiVity or

module performs its function. For example, if the function

of a module was to calculate the average employee salary the

following formula could be use to describe the algorithm:

total salary all employee/number of employees average

employee salary.

Files Read and Files ULISo.

The files read and files written action information

elements represent the obtaining of information and the

outputting of results to and from existing files in the

system by the action or module. In many cases, an activity

will obtain input information from a previously created file

68

rii

in the system. The action information element files read

identifies the name of the subject file. In a similar

fashion, once an activity has completed processing its input

information its outputs or writes the results to a file.

The action information element files written identifies the

name of this file.

Hardware Read and liardware Written.

The hardware read and hardware written action

information elements indicate the interaction of the

software activity with the computer harcdware which supports

the system. An example of a hardware read or hardware

written information could be an input/output port number.

This completes our discussion of tile action information

elements which are common botween the structure chart and

code representations. The remaining action information

elements are unique to a particular representation.

Input F lags and Output Flags.

The input flag and output flag action information

elements indicate the use of a boolean data element to send

control information to an activity. For example, module

error check could send a boolean data element to another

module to indicate that no error exists. Input and output

flag informat ion elements are used in the truc t rC cha rt

representation.

Program Languagp.

The program languag-e information element indicates the

69

[

actual program language which is used in writing the source

code for an activity or module. Examples of the program

language information content arc: Pascal, Fortran, and

Cobol.

This completes our discussion of the information

elements which constitute the data dictionary information

for the subject software representations. This discussion

has briefly described these information elements and pointed

out the commonality which exists among the representations.

Database Design

In the previous section, the infor:intion content of the

data dictionary was discussed in detail. i'his provided a

clearer understanding of the type of informzation th1e

dictionary database must support. The previous sections also

identified numerous areas where the information content of .

the three subject representations are common. By definin,

all common areas, the identification of those information

elements which differ among the three representations made

more meaningful With this background, th1e logical

structuring of the information in ao manier w hi ch best

su p ports tie (I Ic tL i ouar y database can be, n. The process of

logically structuring the information is kno'wn as database

design. Two of the major goals in database design are to

reduce data redundancy or inforidation duplication, where

70
7O.p-"

possible, and to strengthen data independence, the lack of

data structure dependence on application software.d
There are three basic approaches to database design:

relational, hierarchial, and network (17:63). "The

hierarchial approach sees a hierarchy of objects as the most

typicallly useful data structure. Relationships bet-een an

object and several subordinate objects, c.g., between a

manager and his or her employees or between suppliers and

the parts they supply, are hierarchial relationships...

(18:97)." The hierarchial approach views the data structure

in the database as a series of parent/children relationships

which is often depicted as a simple tree stricture. The

advantages of the hierarchial approach are: the faiLiliarity

of many users with the hierarchial structure and the'S

significant degree of data independence supported (19:106).

On the other hand, tihe major disadvantages of the

hierarchial approach are: the manner of dealing with many

to many relationships is clumsy, the basic database

operations such as insertion, and deletion are overly

complex, deletion of a parent element results in the

deletion of all information about its children data

elements, and information about a child is accessible only

through its parent (M': I(MU-l09).

The network approach see.. "...hierarchial relatio.;hiips

as a special case of a network relationshi) between objects.

For example, in a manufacturin:q application each part may

71

. .

TLT--.._.L -.-....-...-.-.-......... "- .-.'.. - - :-. .-.-- L.... -..L ., -.,L."....--'..i I

have many suppliers and each supplier may supply many parts.

Each of these relationships is hierarchial, however, thc

overall relationship between suppliers and parts is a

network relationship. A network system assu.mes that each

object may participate in network relationships" (18:97).

The major advantage of the network approach is that it

easily implements the many to many relationships which exist

in real life. "The main disadvantage of the network model

is its complexity. The applications pro, rammer must be

familiar with the logical structure of the data base because

she/he has to "navigate" through different set occurrences

with the help of connector type record occurrences"

(19:121).

The relational approach does not "distinguish between

objects and relationships. The basic construct is a

relation, or group of related data elements. A relation may

represent an object, say a part, or a relationship, such as

the relationship betwcen parts and suppliers" (18:97). he

major advantage of a relational database is its simplicity.

The relation can be equated to an information table which

greatly enhances user understanding. Other advantages

associated with the relational approach are that it providces

a relatively higlher degree of data independence than the

hlierarchial and network approaches and that it is based upon

a well developed mathe.matical theory or relations (19:95).

72

I'

The relational approach was used to design the database

fog" the data dictionary generation tool. The relational

approach was selected because of its simplicity and ease of

understanding. In the relational approach, information is

organized into tables or relations. A table or relation

contains information elements which are related or logically

belong together. The columns of the table represent the

attributes of the relation. The rows or tuples of the

relation represent single entries into the relation. For

example, a part relation could contain attributes which

describe a part such as part number, color, weight, and

quantity. A tuple in a part relation would contain values

for the various attributes which apply to a specific part.

Figure 12 provides a graphical display of these concepts.

Part Relation

Part Number Part iame Color Ucight Quantity

62ABY bolt red 26 12

3GClF screw blue 5 9

4911V6 nut white U3 20

Figure 12. ExapIIle iClatioinal Table.

The organization or informiation elcments into tables or

relations closely paral lels the manner in which humans think

about information organization. Because of this, the

7 3

~ ~. * .-.

relational approach is easier to both understand and use

than either the hierarchial or network approaches to

database design.

During the first part of this chapter, the information

elements essential to the data dictionary database were

identified and discussed. The database design problem is

concerned with organizing these information elements into

relations or tables in a manner which supports the functions

of the data dictionary, reduces data redundancy, and

enhances data independence.

"The process of crystallizing the entities and their

relationships in table formats using relational concepts is

called the normalization process. Normalization theory is

based on the observation that a certain set of relations has

better properties in an updating environment than do other

sets of relations containing the same data (19:91)."

Normalization concepts provide a useful aid in the

organization of information element s into tables or

relations which can be supported by a relational database.

Before discussing normalization any further, it is

important to understand the concept of key attributes in a

relation. A key is an attribute or combination of

attributes with values that are unique within a relation and

can be used to identify the tuples of that relation (17:37).

Consider a relation which contains information about parts

(Figure 13A) which contains the attributes part name, p ,rt

74

.......:..: ::... : .-...... . -

number, part color, and weight. If the part number uniquely

identifies each tuple in the relation then it, the part

number attribute, can serve as a key for the relation.

Now consider figure 13B. In this relation, the part number

alone is insufficient to uniquely identify each tuple in the

relation. In this relation, a combination key consisting of

both the part number and part color attributes are required

to identify the individual tuples in the relation. "Hot

every relation will have a single attribute key. However,

every relation will have some combination of attributes

that, when taken together, have the unique identification

property The existence of such a combination is

guaranteed by the fact that a relation is a set. Since sets

e do not contain duplicate elements, each Luplc of a given

relationship is unique with respect to that relation, and

hence at least the combination of all attributes has the

unique identification property (17:U8)."

75

K

A. Parts Relation 1
Candidate K\'ey Candidate KeyjI

Part Name Pa rt 1 u ri b er Color Weigh t

bolt 124 red 6

screw 138 blue 5 .

nut 159 ore en 8

B. Parts Relation 2
Primary Key Primary Key

Part Name Part ;.umnber Color Uei h t

bolt 1246 red 6

bolt 1246 blue 6

bolt 5892 blue 4

C. Shipment Relation

Primary Key ioreign Key

Shipment 'I Part NPumber Quantity

21 124 267

25 159 1200

Figure 13 Use of Keys In lRelations.

Figure 13A illustrates another situation which often

arises i n a reola t io n. TIli iLLe 1)t hut pa rt 11n 1.c also

possesses the lproperty of being- unique for every tuple in

the relation. In this situation, the relation is said to

possess two candidate keys, part name and part number. In

this par ticuilar s jt ua tion , .it wo ulId b e aDIpro~riate to0

Y)

designate one of these attributes as the primary key and

the other attribute as arf alternate key for the relation.

Figure 13C illustrates another use of keys in a

relational database. Relation shipment contains the

attributes part number, quantity and shipment . Notice

that the attribute part number in this relation constitutes

an index into the parts relation illustrated in figure 64__.

An attribute such as part number in the shipment relation is

known as a foreign key into the parts relation. Forcign

keys are useful in designating relationships between

different tables or relations in a relational database.

It is important to realize that tuples in a relation

represent entities in the real world. For example, a tuple

in the parts relation represents information about a

particular part that could be used or produced by an

organization. In a similiar fashion, a tuple in the

shipment relation provides information about the content and

size of a particular parts shipment. The keys which exist

in these relations serve as a unique identifier for the

entities represented in the tuples of the various relations.

Keys are an important concept in the relational

approach to database design. Because of their importance,

two important integrity rules are imposed. Integrity Rule 1

is concerned with maintaining the integrity of entities. it

simply states that no component of a primary key value may

be null in a tuple of a relation (17:88). Because the key

77

.:**.-* .- -

serves as a unique identifier for each tuple within a

relation, an identifier whichi was null in value would be a

contradiction in teri.is and can not be allowed.

Integrity Iule 2 is concerned with maintaining

referential integrity. It is common for one relation to

contain references to another relation. For example, the

shipment relation in figure 13C, by means of foriegn key

part number, is able to reference the parts relation shown

in figure 13A. If the part number value in a particular

tuple of the shipment relation did not exist in the part

relation, it would be a violation of referential integrity.

The subject tuple in the shipment relation would be

describing a shipment of parts which, as far as the parts

relation was concerned, did not .-exist. Simply stated,

Integrity Rule 2 specifies that if a tuple in a relation

references a tuplc in a different relation, that tuple must

exist (17:90). To state this in another manner, an

attribute which represents a forei-n key kcy may only

possess a null value or a value which exists in the

referenced relation.

:ith an understanding of key attributes in a relation,

the discussion on database design alld the norma i zat ion

process can continue. As stated earlier, normalization is

the pro cess of grouping data elements into tablcs "'

representing, entities and their relationships. "The reason

one would use the noralization procedure is to ensure that

78

- . .

. %; : " -<: .. *

the conceptual model of the data base will work. This

means, not that an unnormalized structure will not work, but

only that it may cause some problems when applications

programmers attempt to modify the data base (19:130)."

Normalization theory is built around the concept of

normal forms. A relation is said to be in a particular

normal form if it satisfies a certain specified set of

constraints.

"Numerous normal forms have been defined. .. Codd

originally defined first, second, and third normal forms

(INF, 21F, 3ii). . . ." (17:238). Figure 14 displays the

currently existing normal forms.

Universe Of ,elations 'lormalized And Unnormalized

|e0 I Ni Relations

2 NF Relations

j IN 'elations

BCIF Relations

4 i !F ,elations

PJ/iFI' (5 ll') RelationJ

F igure 14. Normal Forms

79

As figure 14 suggests, "all normalized relations are in

l17F; some 11fF relations are also in 2NF; and some 2NF

relations are also in 3NF. The motivation behind the

definitions was that 21,F was more desirable" than

lIUF, ... ,and 3NTI' was more dcsirable than 21,F. That is, the

designer should generally choose 3NF rclations in designing

a database, rather than 2NF or INF relations (17:238-239)."

For the purposes of this investigation, relations were

only formally normalized to the third normal form.

However, other normal forms do exist and are displayed in

figure 14 and briefly summarized below.

"Codd's original definition of 3NF suffered from

certain inadequacies A revised (stronger) definition

due to Boyce and Codd, was given... -stronger in the sense

that any relation that was in 3NF by the new definition was

certainly 3NIF by the old, but a relation could be 311F by tle

old definition and not by the new. The new 31: is sometimes

called Boyce/Codd Normal Form (13CUF) to distinguish it from

the old form. Subsequently, Fagin defined a new "fourth"

normal form (41iW) and more recently another form which he

called "projection-join normal form" (1'J/7F, also know as

5iW) (17:239)."

As stated earlicr, the data dictionary database design

considered only the first three normal forms to be - ".

important. Before discussing the meaning and constraints

80

.. t- - -.. *~,...

associated with these normal forms, it is important realize

that normalization theory does not constitute a hard and

fast process for database design, but rather a set of

guidelines which aid in the design process. ":ormalization

theory is a useful aid in the design process, but it is not

a panacea. Anyone esigning a relational database is

advised to be familiar with tile basic techniques of

normalization..., but we certainly do not suggest that the

design shouldbe based on normalization principlcs alone

(17:238)."

A relation is in first normal form (li') if and only if

all underlying domains contain atomic values only (17:243).

To state this in another manner, every value in the

relation, each attribute value in each tuple, is

nondecomposable so far as the system;i is concerned. A

relation is considered to be in first normal formi when there

exists at every row and column position in the table only

onre value, never a set of values.

A relation is in second normal form if and only if it

is in first normal form and every nonkey attribute is fully

dependent on the primary key (17:246). T his means that a

relation is in second norrial form when the value of the

primary key attributes destermine the value of tile other

attributes in the relation. For example, the part relation I
shown in figure 13A demonstrates this idea. The primary key

part number determines the value of the other attributes

81 ""

S "

2

in particular tuple of the relation.

A relation is in third normal forri if and only if it is

in second normal form and every nonkey attribute is

nontransitively dependent on the primary key (17:248). When

one nonkey attribute can be determined with one or more

nonkey attributes, there is said to be transitive functional

dependency between the two (17:247). As an example of a

relation which possesses transitive dependence, consider a

relation named supplier. This relation contains three

attribute fields: supplier number, city, and status. In

this relation, the primary key is supplier number and city

and status are nonkey attributes. As a condition of this

relation, assume that status is determined by the city in

which the supplier is located. based upon this condition,

the status attribute value can be determined by the primary

key value or the nonkey attribute value for city. Although -

the city attribute value is determined by the supplier

number, the fact that the status value can be determined

from the city value leads to a situation where transitive

dependency exists.

A method of removing this transitive dependcnce is to

decompose the s;upplier relation into two new relations,

supplier city and city; st.atus. Figure 15 displays both the

original supplier relation with transitive dependency and

the two newly form!ed relat:.ons in third nornaal f)rm.

82

Supplier Relation

Primary Key

Supplier Number City Status

2NF With Transitive Dependence

City Status Relation Supplier City Relation

City I Status Supplier 14umber City

New Relations In Third Normal Form

' Figure 15 Transitive Dependence

The design of the data dictionary database utilized the

normalization process in formatting all relations to at

least the third normal form. As pointed out earlier, the

use of the normalization process alone will not ensure a

good database design. Numerous factors and trade offs come

into play during the design process. An important point to

keep in mind is the intended purpose of the database under

design. A thorough understanding of ho.1 database

information will be used and changed in the course of nornal

operations is esosential. Also of primary concern is the

effect the database d, csi!,,n will have upon applictions

software written to interact wj th the database. In the

following section, the data dictionary datalbase will b,2

presented and discussed.

83

Data IDictionry Dtabase

In this section, the relations which makeup the

dictionary database are discussed. The contents of the

relations and how they solve the problem of meetin,, tile

information maintenance requirements for the various

software representations are also be discussed. The

alternatives considered when designin, the database are

presented and the rationale for raking certain design

decision arc discussed.

W When the information content of the dictionary was

studied, it was recognized that a great deal of commonality

existed among the various software representations which are

supported by the data dictionary : generation tool. In

* discussing the relations which make up the dictionary

database, initial discussion focus on those relations which

the software representation have in common. Discussion will

then be directed to those relations which arc unique to

specific software representations.

Desc riLption elation.

The descript ion relati on contains th textual

" description of the notion and data ent ities for all software

representations supported by the dictionary. In reality,

there are eight different description relations contained in

the database. A description relation exist,; for both the

data and action enti ties for all four software

84

'-A ° - .

representations. F'igure 10 piovidos a graphical display of

j the attribute fields continine(' in this relation and a list

o f the eight relations which use this format and there

associated software representation. Also included in figure

16 is the entity type of the item described by this relation

which would correspond to the classification of the value

contained in the name field of this relation

Desc ript ion i'elat ion

Project Name Line Description

Database Relation Software lRepresentation Lntity Type

a description SAUDT a cti v it y
0o d _description S A T data itema

b description Data Flow Diagrara 1)u bbl).e
di description Data Flow Diagram data f low~
prdescription Structure Chart pr0ce ss
p description Structure Chart parameter
m description code r: odml e
v-description Code V a r ia able

*primary hey value

Fi-ure 16. Description a'elation.

*'lThe primary L:ey for this relation is a combinationl of

thle project ii-me, nSI:IC, and l ine attributes. The project

attribute identities5 the teais or individuall reslioniiJbte fo r

this particu'lar en try in to tlhe di c tioninry d ata as7 e . T he

n1 11 Me a t t r i 1) L t 0 i (I c fl t iI F e L tie T a r t i c u I a r- ac t i oil 0 r (I a t a

eIt itL b e in o (I es cr e,(I. I'lle I incio iLtr-ib1)u t c id(Inifiecs thei

particular lin11e of t extL hi ChI an i r~iv Ldna'l tule inI t Ie

GENERATE DATA DICTIONARIES(U) AIR FORCE INST OF TECH
~~U CS RIGHT-PATTERSON AFB OH SCHOOL OF ENGI. C M THOMAS

UNCLASISIFIED DEC 82 AFIT/GCS/ENG/84D-29 F/G 9/2 N

_mmhmhhmhhhl
mhhhhhmhhmhu
momhhmhhhhhhu
momhmmhhhhl
Ehhhhhhhhhhhhl
mhhmhhhhhl-m

ll -* 132 111112.2

11111_L. 5

MICROCOPY RESOLUTION TEST CHART

NAHI(NAt WURF Al Ofi USANnAPOn A

relation contains. The description attribute contains for

each tuple in the relation 60J characters of text 1:hich

describes tie entity identified in the name attribute.

Figure 17 diplays what the relation when it contains som -C

actual values.

Project Name Line Description

team 1 qty 1 numeric value which represents

team 1 qty 2 the number of items required by

team 1 qty 3 the customer to complete a sale.

Figure 17 Description Relation Example.

History 1,- e__ i n. .-. i:

The history relation provides information concerning

the modification or change a dictionary entity undergoes

within a particular development phase. This relation

maintains information about when and by whom a dictionary

entity is modified. Fi-ure 18 presents a graphical display

of this relation and its attribute fields. It also lists

the eight relations in the daLahase where thi:s for mat is

used and the associated software representation. Also

included is the entity type of the itmem described by this

relation.. .

. * . . .--*- ;.-... . - - :-'-;. :- -- : :::-== = ==. .=..========. -,:. .. . - .:::: .-:: :::-. :-., L: . :::.- :- - :- : .

History Relation

Project Name Version Datc Author

Database Relation Software Representation Entity Type

a history SADT acitivity
dhistory SADT data item
b history Data Flow Diagram bubble
df history Data "low Diagram data flow
pr_history Structure Chart process
p_history Structure Chart parameter
m history Code module
v-history Code variable

primary key

Figure 18. History Relation.

The primary key in this relation is a combination of

the project, name, and version attribute fields. The

project attribute identifies the group or individual

responsible for the dictionary entry. The name attribute

- identifies the dictionary entry being described. For

example, in relation phistory the name attribute would be

*the name of a particular parameter in the structure chart

software representation. The version attribute sequentially

identifies the modifications to a particular dictionary
* entity. For exranple, when an entity is initially entered

into the data dictionary its version is identified as 1.0.

When this entity is modified, the version attribute become

.7

1.1 in a new tupic in this rclation . The date attribute

desig-nates the month, day, and year when the entity wra s

modified. The author attribute identifies the individual

responsible for changing somie aspect of tilc entities meaning

in the dictionary. Fig-ure 19 provides a demonstration of

what t his relation might look lik~e when actually U SeCd to

document entity modifications.

Project INa Me Version Date A ut ho r

tearmi data 1.0 6-9-04 Ted

0teami da ta 1 .1 8 -24 -84 BDill

t ca rl dIa t a 1.2 12 -14 -4 Jikc

Figure 19 History Reclation Ex:ample;

The dictionary database only ma in t a ins the current

information on a dictionary entity. in other words, whe on

anyv information content on an entity is miodified thle 01(1

inforniation content is nlot maintained for reference

purposes. The history relation, however, does provide a

means for maintaining a record of all entity modification

w h ich take place as we] I as the timei when they occured and

the ind ividual i espons i hi e f or the chian,,. I;Y m1aini-iininl~z

this r eIa t ion, it i s possih 1)1c to recover this information

f r om- the author of the change or old printed cpoies of thle

dictionary contents.

8-i

i . * . - '. .

Hierarchy Relations.

The hierarchy relations contain information about tile

logical decomposition of action and data entities into other

action and data entities. The concept of logical

decompostion of the action and data elements associated with

a software project is very important in the Top Down Design

method of software design.

The Top Down Design Ilethod initially considers a

software project to consist of only one action entity and

its associated data entities. This single action and its

associated data entities are then decomposed into a series

of more detailed entities. These newly derived action and

|-. data entities are then, themselves decomposed into still

more detailed components. This decomposition -process

continues until a level of detail is reached where further

decomposition is not possible.

This process allows the software designer to begin with

a highly abstract concept of the software project,

represented by the initial action entity and its associated

data entities, and logically decompose the project into

smaller more detailed components represented by the derived

action and data entities. 4

The concept of Top Down Design is supported by the

SADT, data flow diagram, and structure charts methods of

software representation. Figure 20 demonstrates the Top

89.

.- '_---,-, ~~~~~~~~~~.............. '.. . .-.-.....-.- ;..-... .. -.. .. '2"l.-.i .ii-: .i.--.i--i - -"

Down Design Nethod as it might be portrayed in the data flow

diagram representation

a .. , b

Top Level

c d f h

First Level of Decompostion

Figure 20. Logical Decomposition Using Data Flow Diagrams.

In order to support the logical decomposition process,

the hierarchy relation, by means of its attributes, ties

each component entity to the entity from which it was

derived. Figure 21 presents a graphical display of the

attribute fields contained in this relation. It also lists

the relations in the database which use this format. The

corresponding software representation supported and the

entity type described by these relations are also listed.

90

I -. "1-

Hierarchy Relation

1Project high-i1ame Low_Lame

Database Relations Software Representations Entity Type

a_hierarchy SADT activity
dhierarchy SAUT data_item
b_hierarchy Data Flow Diagram bubble
dfhierarchy Data Flow Diagram data flow
pr-hierarchy Structure Chart process
p_hierarchy Structure Chart parameter
v_hierarchy Code variable

primary key

0Figure 21. Hierarchy Relation.

The primary key for this relation consists of a

combination of all attributes. The project attribute

identifies the individual or group respons-Ible f-or this

dictionary entry. The high_name attribute identifies the

name of the entity which is the parent of the lower level

entities. The low name attribute identifies the entities

which are children or were derived from the parent entity .

identified in the highname attribute.

The code software representation uses this relation in

a slightly different manner than the other three -.

representations. 1ihe concept of logical decomposition does

not comne into play in the v 1 hierarchy relation which

supports the code representation. In this c ase, thle

relation supports the idea of a variable being derived from

91

~ .*." *q*.* *~'." ..

a data structure supported by a particular programming

language. A good example of this situation is the record

structure in the Pascal programming language. A record is a

data structure which can consist of many different fields.

A variable derived from a Pascal record would be considered

the child of that record in the hierarchy relation.

Figure 22 presents an example of how the hierarchy relation

would maintain information about the logical decompostion process

in the structure chart representation. The example displayed in

figure 20 is docu:cnted in this figure.

df-hierarchy (data entities) bUhierarchy (action entities)

Project lioh_Name Low Name Project _Iiph 1ame LowName

team 1 a c team I A B

team I a f team I A C

team 1 b i team 1 A D

team 1 b d

team 1 b h

Figure 22. Hierarchy Relation ;Lxa iple.

Reference Relation.

The refer, c e rcl it ion c o n . i , in f o r m i on wl i c h

allows the development of n act io or data cnjtity to be

traced through the software des in proces. ji fferent

software representations will be used to develope software

in the various stagcs of the software ife cycle. The

(92

-, C

- .

::: - . - , / :; : . :: .: : ... : : : : .. : .: .. : :: : .. ::... . ; - .. .-- , .,,.. -

reference relation contains information which identifies the

particular software representation used in the previous

developiaent stage and the reference or references which

identify the entity ill tile previous development s tae.

Figure 23 provides a graphical display of the attributes

which make up this relation. Figure 23 also lists tile

relations using this format, the software representation

supported and the entity type described in each of these

relations.

Reference Relation

Project irame leference i,e f Ty p e

Database ,clations Software i'cprerentations. :ntity Jype

a _referenceoSA-T activi .v
d reference gAll'f data item
breference jmata Flow Dia,ran bubble
(If_reference Data Flow DiagramF data flow-
prreference Structure Chart process
p reference Structure Chart parameter
in reference Code nodule
v-reference Code variable

primary key

Figure 23. ieference .,elation.

T' lie pr ir-i y r v u V i or t 11 i.S re I a t i oin C on s ists o f a

conbination of a II attribut,,s, conta i ned iii the relaLioii.

The project, att it .', a in tlIe previous relations

discussed, ident if i; the proej oct or i (I ivi(Iia[responsil)1e

., . .

........ ..-

for the dictionary entry. The name attribute identifies the

entity being described. The reference attribute designates

the identity of the entity in the previous development

stage.

The software representations supported by the

dictionary designate an action entity by both a name

convention and a numeric designation. For this reason, the

reference for an action entity can be either a name or a

number. 3oth action and data entities can contain a

reference to a written requirements docunert by including

under the reference attribute the number of the section of

the document which applies to the entity being described.

The ref_type attribute identifies the particular

representation and the method used (numbcr or name) to

designate a reference to a previous development- stage.

Figure 24 diplays the allowable ref type attribute values

for each of the four representations supported by the

dictionary.

94I

....................-. ...

SA[lf - Activity
Requirements Number D"D Bubble UIumber
DFD Bubble Name

SADT- Data Item
Requirements Number DFi) Data Flow Nane

Data Flow Diagram - Bubble
Requirements Number SADT Activity Nlumber
SADT Activity ,!arie

Data Flow Diagram - Data Flow
Requirements Number SADT Data Item

Structure Chart - Parameter
Requirements Number SADT Data Iten
DFD Data Flow

Structure Chart - Process
Requirements Number SADT Activity .umber
SADT Activity 11ame DD Bubble IlurIber
DL"D Bubble Name

Code - Variable
SC Parameter flame SA)T Data Item
DI'D Data Flow i,equirements :lumber

Code -Nodule
SC Process lumber SC Process Fane
SADT Activity Number SADT Activity :ame
DFD Bubble liuinber DI'D Bubble iiane

Figure 24. RefType Attribute Values

95

• ... ° -
• ~~~~..", .".° % -- . .". . . . " .°.., -. •% ... - . . .% -%"- -- -Z ' -' -- ' " - . *- 4- ' - -- - A. ' -- . . _' ' .,-q - -. _ -' - ._ .- . ' '_ .' - ' . ' . ' ." -- " ." . .* .

Alias Relation.

The alias relation- documents the sit u a t ion in a

software ersnainwhere an action or data element is

identified by more than one name. The format for the alias

relation exists in two forms, one for data entities and one

for action entities. Figure 25 provides a graphical display

of the attributes which make up the two forms of the alias

relation. Also shown in figure 25 are the actual database

relations which use the displayed formats, the name of the

software representation which is supported by the relation,

and the entity type described by the relation.

Alias Relation For Data Entities

Proec Name-1 Name_2- Comment jWhere-Used

* *,

Database Relations Software Representations Entity Type

daiias SADT data item
dfT-alias Data Flow Diagram data flow
p alias Structure Chart parameter
v_al ia s Code variable

Alias Relation For Action Entities

Project NameI Name 2 Comment

Database Relations Software Representations Entity Type

ia Iias S A D e t iv it. y
reali a s Data Flow Diagram bubble
pr alias Structure Chart process
moalias Code module

a primary key t

Figure 25. ALias Relations.

96

@ [Proect.Name..I.Na._2...Coment....hre_.sed

Databae Reltions Softwre Reresenation Enit Typ '

Both forms of the a] ias relation use a combination of

j the project, namel , and name_2 attributes as their primary

key. These three attr iLbutc: taken together cal uniquely

identify any tup e in the ;llias relation. The project

attribute designates the team or individual responsible for

this dictionary entry. The name_1 attribute contains the

alias name or the "other name" by which a data or action

entity can be identified. The name_2 attribute specifies

the original or pri mary name which identifies all action or

data entity.

* The selection of these three attributes as the primary

key provides a unique identifier for each tuple in the

relation. The project attribute ensures that the

S| information in the tuple not will be confused with another

software project. The name 1 and name_2 attributes form a

unique identifier within the software project. While it is

conceivable that a entity could be identified by more than

one alias name, an alias name can not be allowed to be

associated with more than one original entity name.

Both the data and action forms of the alias relation,

contain a comment attribute. The comment attribute provides

a place for the tool user to include a comment concerning,

the alias name for a dictionary entity. This comment should

attempt to explain why an alias name was used to identify

the entity. This is a valid question. Th1e entity

obviously existed and was identified by an oripinal name.

97

.

Why was the primary name not used to identify the data

entity ? The use of alias names should be closely monitored

and wherever possible should be eliminated. Having two

names for one entity leads to communications problems and

confusion in the operations of the data dictionary and the

development of software in general.

The only difference between the two forms of the alias

relation is the existence of an attribute field labeled

where used in the data entity version of this relation.

This attribute identifies the action entity or entities in a

project which use the alias name to identify a data entity

with which they interact. For example, assume that an SADT

activity named "getdata" takes as an input a data item named

"new data". Also assume that the data item "new data" is

not the primary name for the data entity but an alias name

for the data item "sales data". The alias relation depicted

in figure 26 provides a graphical picture of how the alias

relation would document this situation.

Project Name I Name_2 Comment Whereused

Team 1 New Data Sales Data Design Error Get data

Figure 26. Alias Relation Example.

The value set relation is used to identify the values a

particular data entity can assume. This relation is only

98

useful in providing meaningful information about a data

entity when the set of values that a particular data entity

can assume is both finite and reasonably small. If the set

of values for a data item were infinite, the relation

containing these values would have no size limit. In much

the same manner, if the number of values associated with a

data item was extremely large, the cost of storing this

information in the database would exceed the benefit of

having access to the information. However, if the number of

values is small, maintaining them in the dictionary is

beneficial. As a general rule of thumb, a data entity which

can assume only ten or less values should have these values

included in the dictionary database.

Because this relation is only concerned with data

entities, it only supports the data entity portions of the

software representations supported by the dictionary.

Figure 27 displays a graphical representation of the

attributes which make up the value set relation. Also

included in figure 27 are the names of the database

relations which use this format, the software representation

supported, and the entity type described.

The project attribute identifies the person or group

responsible for this entry into the dictionary. The name

attribute identifies the data entity being described in the

relation. The value attribute contains the value which the

99

data entity identified in the name attribute can assume.

ValueSetRelation

Project Name Value

Database Relations Software Representations Entity Type

d value set SADT data item
dfTvalue-set Data Flow Diagram data flow
p valueset Structure Chart parameter
v value set Code variable

*primary key

Figure 27. Value Set Relation.

The primary key for this relation consists of a

combination of all the attributes which make up the

relation. This is necessary to ensure that all tuples in

the relation can be uniquely identified. Since- it is

not only possible but highly likely that a data entity will

have more than one value associated with it, the inclusion

of the value attribute in the primary key is necessary to

ensure the unique identification property.

As stated earlier, this relation is only useful when a

finite and reasonably small set of values exist which the

data entity being described can assume. For example, if a

data entity named city could only assume the names of four

cities in a particular software application, the use of the

value set relation would be appropriate. On the other hand,

if the data entity could assume the name of an), city or town

1000 "

in the United States, the set of values would be so large as

to render the use of the value set relation worthless.

Figure 28 gives a visual example of how the value set

relation would support the first case of the data entity

city described in the previous example.

Project Name Value

Team 1 city Boston

Team 1 city New York

Team I city Atlanta

Team 1 city Washington

Figure 28. Value Set Relation Example
0*

Algorithm Relation.

The algorithm relation contains information which

explains how an action entity performs its function. An

algorithm is a step by step procedure for solving problem or

performing a task or operation in a finite amount of time.

This relation allows the tool user to specify the step by

step procedure by which the action entity being described

operates. Because this relation is only concerned with

* action entities, it is only applicable to the action portion

of the software representations. In fact, the algorithm

relations is only applicable to the structure chart and code

software representations. The SADT and data flow diagram

L 101

methods of software representation are most useful during

the requirements definition phase of the software life

cylce. During this initial phase of development, the

software designer has not determined what algorithms will be

used to perform the desired actions. For this reason, the

algorithm relation is not included among the database

relations which support these software representations.

Figure 29 provides a visual display of the attributes

which make up the algorithm relation. Also included in

figure 29 are a list of the database relations which use

this format, the software representation supported, and the

entity type described.

Algorithm Relation

Project Name Line Algorithm

Database Relations Software Representations Entity Type

p_alg Structure Chart Process

m_alg Code Hodule

" primary key

Figure 29. Algorithm Relation.

The project attribute identifies the person or group

responsible for the dictionary entry. The name attribute

identifies the action entity described in a particular tuple

of the relation. The line attribute identifies the

particular text line of the total action algorithm which is

contained in a particular tuple. The algorithm attribute

102

contains 60 characters of a text which provides a portion of

the overall algorithm for the action entity.

The primary key for this relation consists of a

combination of the project, name, and line attributes.

These three attributes taken together are able to uniquely

identify every tuple in the relation.

Figure 30 provides an example of an example of what the

algorithm relation would look like when supporting an actual

dictionary entry.

Project Name Line Algorithm .

Team A Sort I If A>B Then

Team A Sort 2 Put A in File 1

Team A Sort 3 If A<B Then

Team A Sort 4 Put A in File 2

Team A Sort 5 If A=B Then

Team A Sort 6 Put A in File 3

Figure 30. Algorithm Relation Example

In format and operation, the algorithm relation is

identical to the description relation discussed earlier.

The only difference between these two relations is the

nature of the information they maintain.

This concludes the discussion of the dictionary

relations which are common among the four software

representations. The remainder of the relations will be

103

•. 0 3- .-. i

.

discussed within the context of a particular software

representation. This does not mean that the remaining

relations do not contain elements which are common among the

various representations. However, the discussion of these

relations is more effective when the strengths and

constraints of the individual software representations are

taken into consideration.

SADT Relations.

There are three dictionary relations which support the

SADT software representation which have not already been

discussed. These three relations are the activity,

activityio, and dataitem relations. These relations will

be discussed individually in the following sections.

G~e Artivijty Relation.

The activity relation can be considered as the main

relation in the dictionary for identifying the action

entities or activities depicted in a SADT software

representation. Figure 31 provides a graphical display of

the attributes which make up this relation.

Activity Relation

Project Name Number

* primary key

Figure 31. Activity Relation.

The project attribute identifies the team or individual

104

*i

responsible for this entry into the data dictionary. The

name attribute identifies a particular acitivity within a

software project. The number attribute contains the

activity number associated with a particular activity on a

SADT diagram.

The project and name attributes form a unique

identifier for each tuple in the activity relation. For

this reason, a combination of these two attributes form the

primary key for the activity relation. Figure 32 gives an

example of an SADT diagram and how the activity relation

would identify the various activities contained in the

diagram.

Find Data

j 1.2.4.1

Process
Data
1.2.4.2

Sort Data

- - 1.2.4.3
Activity Relation

Project Name Number

Team 1 Find Data 1.2.4.1

Team 1 Process Data 1.2.4.2

Team 1 Sort Data 1.2.4.3

Figure 32. Activity Relation Example.

105

".

i'-.i'.2 5 iI i--''--'. '.-'i-".-.."/ . i--- . --. --- '-..-- i.----..---- - .i---- ---- ' . "& t'- .. iii. .-t --..-.. -.. i --. ,.. .- - 2-i '

Activit 10 Relation.

The activityio relation identifies the elements of an

SADT software representation which interact with an action

entity or activity. The elements are normally SAI)T data

entities or data items. These data entities represent the

inputs, outputs, controls, and mechanisms which are used and

produced by an SADT activity.

Figure 33. provides a graphical display of the

attributes which make up the activity io relation.

Activity_IO Relation

Project I Aname I Dname ElementType

primary key

Figure 33. AcitivitylO Relation.-

The project attribute identifies the person or group of

persons who are responsible for the dictionary entry. The

Aname attribute contains the name which identifies the SADT

activity being described. The Dname attribuLe contains the

name of an SADT data entity which interacts with the

activity identified by the Aname attribute. The

elementtype attribute classifies the manner in which the

data entity identified in the Dname attribute interacts with

the activity identified in the Aname attribute.

'[he classification of tie interaction between an

activity and a data entity in a SAD'' diagram or

106

.... - _ _ . .'. w, " ' . . .

representation is determined by the position of the data

entity with respect to the activity on a SA)'T diagram. The

graphical display provided in figure 34 should help to

clarify this concept.

C (Control)

Sort
(Activity)

A B

(Input) T (Output)
D (Mechanisms)

Figure 34. SADT Activity and Data Item Interactions.

As figure 34 demonstrates, there are four

classifications for activity and data entity interaction in

the SADT software representations: inputs, outputs,

controls, and mechanisms. The element-type attribute will

OS contain one of these classification for a particular tuple

in the activity_io relations.

Figure 35 demonstrates how the acitvity_io relation

would document the activity and data entity interactions

depicted in the example in figure 34.

Activity_IO Relation

Project Anane Dname F ElementType

Team 1 Sort A Input

Team I Sort B Output

Team 1 Sort C Control

Team 1 Sort 1) Mechanism -"

Figure 35. Activity_10 Relation Exanple.

107

The primary key for this; relation is a combination of

the project, aname, and dnam.e attributes. The combination

of these values form a unique identifier for each tuple in

the activityio relation.

Data Item Relation.

The DataItem relation contains information about the

data entities used in an SADT representation of a software

project. Each tuple in this relation contains information

which describes a particular data entity. Figure 36

provides a graphical display of the attributes which make up

the data item relation.

DataItem Relation

Project Name Data Type Low High Data Span

primary key

Figure 36. DataItem Relation.

The project attribute identifies the individual or

group of individuals responsible for this entry into tile

dictionary. The name attribute identifies the particular

SADT data entity which a tuple in the relation describes.

The datatype attribute attempts to classify the data

entity in terms of the type storage structure required to

represent the data entity in a programming language. This

attribute may not even contain a value. Since the SADT

representation is primarily used during the requirements

108

phase of software development, it may be impossible to

specify a data type for a lata entity at that stage of

development. However, if that information is available it

enhances the description of the data entity. The dictionary

supports the documentation of four standard data types:

integer, real, character, and boolean. However, if these

four types are not sufficient to describe the data type of

the data item, the tool users may enter their own data type

for a data entity. The data type attribute will contain

either one of the four standard data types or a user defined

data type.

The low attribute contains the minimum value a

particular data entity can assume. Like the data type

to attribute, the low attribute may not contain any value. For

some data entities a minimum value will not exist. For

example, a data item which represented the cities of the

United States would not possess a minimum value which could

be maintained in a low attribute field.

The high attribute contains the maximum value a data

entity can assume. Like the low attribute a particular

tuple in the data item relation may not contain a value for

the high attribute.

P The dataspan attribute contains a 60 character

description of the range of values a particular data entity

can assume. This attribute is eX:trenely useful in

describing the characteristics of a data entity. For

109

I

"." ." ',".- ...- ."..26 ... -'"".i.:. ...;-. .: .- ''- ..,: ---.- ", . . .: :'".:, -. ..,'. -: .: .'.:...,:.::.

example, if a data item represented the cities of the United

States, it is o)vious that neither a low or high attribute

value could be specified. However, the dataspan attribute

could easily represent this situation by including the

statement "all cities in the US" in its attribute field for

the tuple which described this particular data entity. Like

the low and high attributes, a tuple in the relation may not

contain a value for the dataspan attribute.

This concludes our discussion of the relations which

support SADT method of software representation. The

,* following sections will discuss the relations which support

the data flow diagram method of software representation.

Data Flow Diagram Relations.
0 0

There are three relations which support the data flow

diagram representation which have not been previously

discussed. These relations are the bubble, data_flow, and

bubbleio relations. From the discussion of these

relations, it will become obvious that these relation are

almost identical in format to the three relations dicussed

in the previous section which supported the SADT

representation.]Iowever , aIt hough si mi liar these relations

support a respresentation which uses entirely different

graphical symbols to represent the elements of a software
project. These relations will be discussed in the following

sections.

110

.. . . ,

Bubble Relation.

The bubble relation is the primary relation for

identifying the action entities depicted in the data flow

diagram representation. Figure 37 provides a graphical

display of the attributes which make up the bubble relation.

Bubble Relation

Project Name Number

* primary key

Figure 37. Bubble Relation.

The project attribute identifies the person or group

responsible for this entry into the dictionary. The name

attribute identifies the particular data flow diagram action
do

entity being described. The number attribute contains the

number associated with the action entity on a data flow

diagram.

The combination of the project and name attributes

serves to uniquely identify every tuple contained in the

bubble relation. For this reason, the combination of these

two attributes serve as the primary key for this relation.

Figure 38 displays a data flow diagram and how the bubble

relation would document the actions entities depicted.

'he bubble relation is identical in f ormat to the

activity relation discussed earlier. Both relations serve

to identify the action entities associated with their

10 ..]1

11"1

.. -

respective software representations.

A --- ~ Get Data2.5.6.1 Process Data

Te.5.6.2

B
Sort Data

Figure~~~'o
Databl eato xape

2.5.0.3

D

Bubble Relation

Project N amie N4u m ber

Team 1 Get Data c.5.6.1

Team 1 Process Data 2.5.6.2

Team 1 Sort Data 2.5.6.3

Figure 38. Bubble Relation Example?.

-Bubble 10 Relation. -

The bubble-io relation contains information ab~out the

interaction between data entities and act ion entities in a

data flow diagram representation. Fi, ure 39 displays the

attributes which make tip the bubble io relation.

Bubble I0 T 'elat ion

Project Bname 1 l)naime Direct ion ,

: primary key

Figure 39. Bubble_10 Relation.

112

. .- .

The project attribute identifies the person or group

responsible for this entry in the data dictionary. The

bname attribute identifes the structure chart action entity

described by a particular tuple in the relation. The dname

attribute identifies a structure chart data entity which is

either an input or an output to the action entity being

described. The direction attribute indicates whether the

data entity identified in the dname attribute is an input or

an output to the action entity described by a relation

t* tuple.

A combination of the values contained in the project,

bname, and dname attributes uniquely identify each tuple in

the bubbleio relation. Both the action entity name and the

data entity name are required for unique tuple

identification, because an action entity may have several

data entities it interacts with and a data entity may be

used by more than one action entity. Because of this unique

identification property, the project, bnanme, and dname

attributes serve as the primary key for the bubble io

relation.

Fi gure 40 presents an example of a data flow d i a raam

and how the bubble io relation would document the

interaction between the action and data entities depicts in

the example data flow diagram.

The format of the bubble io relation is almost

113

identical to the forillat of the activity_io relation

discussed earlier. Both relations maintain information

about the interaction between data and action entities in

their respective software representations. The only

difference between the two is that the values in the

direction attribute of the bubbleio relation only indicate

if a data entity is an input or output of the action entity.

The corresponding attribute, elementtype, in the

activity-io relation allows a data entity to be classified

as a control, mechanism,input or output.

A 13B C D

Get Process Sort

Bubble_10 Relation

Project fbname d name Idirection

Team I Get Data A Input

Team I Get Data B Output

Teani 1 Get Data E Output

'ream 1 Process Data B luput

Team 1 Proc ess a ta (1, Otit put

Team 1 IProc ess Data F" Out put

Team 1 Sort Data F input

Team 1 Sort l)ata !) Output

1 14

Figure 40. Bubble_10 Relation Example

Data Flow Relation.

The dataflow relation describes the data entities

which exist in the data flow diagram software

representation. The information contained in a tuple of

this relation describes a particular data entity. The

attributes which make up this relation are shown in figure

41.

DataFlow Relation

[Project Name IData Type I Low ligh Data Span

* primary key

Figure 41. Data Flow Relation.

The project attribute identifies the person or group

responsible for this entry in the data dictionary. The name

attribute identifies the data flow diagram data entity

described by a tuple in the relation. The data_type

attribute indicates the storae structure the data entity

would require in a prograrnmin language. 'fhe value of this

attribute may be one or four qtaindard dat~i typer di rectly

supported by the dictionary; inteer, real , characterand

boolean; or a 11.1; vr in uput va l 1i r I lif, (I.i ,t vpe

attribute. The low and i at t r i ht ;,,; (nt i i, the r in imum

and maximum values, rl i I , Ii II I t J it ,1 ('lt i V c';i n

."0

assume. The dataspan atribute consists of a sixty

character description of the range of values the data entity

can assume. The data type, low, high, and data_span

attributes may not contain a value for some data entities

documented in this relation.

A combination of the attribute values for the project

and name attributes serves to uniquely identify each tuple

in the data flow relation.

The format of the data flow relation and the format of

the data-item relation discussed in the section on SADT

relations are identical. Both relations describe the data

entities of their associated software representations.

This completes the discussion of all relations which

support the data flow diagram method of software
go

representation. The next section begins discussion -on the

remaining relations associated with the structure chart

method of software representation.

Structure Ciart Relations.

There are five relations which support the structure

chart representation that have not been previously

discussed. These relations are the process, processio,

prcall, prpassed, and parameter relations. These

relations will be discussed in the following sections.

Process Relation.

The process relation identifies the action entities

depicted in the structure chart software representation.

116

- .•.0 - - . • • , . - " . " , , . . - . . . - . - . " . . . - , _ ' _ . ' - . - ' ' - ' . . .

Figure 42 displays the attributes which make up the process

relation.

The project attribute identifies the person or group of

persons responsible for this entry in tile data dictionary.

The name attribute identifies the particular action entity

or process being described. The number attribute contains

the number associated with an action entity when it is

depicted on a structure chart diagram.

Process Relation

Project Name Number

primary key

Figure 42. Process Relation.

A combination of the values contained in the project

and name attributes serve to uniquely identify each tuple in

the relation. For this reason, a combination of these two

attributes serve as the primary key for the process

relation.

Figure 43 displayb an example of a structure chart

diagram and how the process relation identifies the action

entities depicted by the structure chart example.

117

~ *.t- .~ ~ -*.~.*..p*... -*..- .

Process
Data
1.2.3.1

Data Data
1.2.3.2 1.2.3.3

Process Relation

Project Name N umbcr

Teaml Process Data 1.2.3.1

Team I Get Data 1.2.3.2

Team 1 Sort Data 1 .2.3.3

dO Figure 43. Process Relation Example.

Process 10 Relation.

The processio relation describes the interaction of a

structure chart action entity and a structure chart data

entity. Action entities are often called processes and data

entities are often called parameters in structure chart

terminology. The processio relation identifies the

parameters which provide input to or constitute the output

from an action entity or process. A parameter in tile

process-io relation can be a file or hardware item as well

as a parameter. The important characteristic is that the

data entity described by this relation represents the action

118""-

.0 ...

entities interface or interaction with the rest of the

software project under development. Figure 44 presents a

I graphical display of the attributes which make up the

processio relation.

The project attribute identifies the person or group of

persons who are responsible for this entry into the data

dictionary. The name attribute identifies the action

entity or structure chart process being described by a tuple

Process IO Relation

Project I Name 1 name Direction P Type Class Order

" primary key

Figure 44. Process IO Relation.

00 in the relation. The pname attribute identifies a parameter

or other item which interacts with the action entity

identified in the name attribute. The value contained in

the pname attribute may identify a file or a hardware item

as well as a structure chart parameter.

The remaining four attributes of the processio

relation (direction, ptype, class, order) describe the

nature of the interaction between the action entity and the

data entity and thte nature or classification oI the ata i

entity. The values contained in these attributes are highly

dependent upon the nature of the associated data entity.

The class attribute identifies the nature of the data

entity interacting with the action entity. The values which

119
r .o
*

can appear in the class attribute are: local, global, file,

and hw (hardware). The lacal and global values indicate that

the subject data entity is a structure chart parameter. If

the value is global, it indicates that the parameter cal be

accessed by any process or action entity in the program or

project under development. If the value is local, it

indicates that the parameter can only be accessed by the

portion of the program where it is known or identified. If

tile action entity is interacting with a file or hardware

item, then the class attribute value will be file or hw

respectively.

The direction attribute classifies the nature of the

interaction between the action and data entity. This

0 classification indicates how the action entity uses the

subject data entity. There is a definite correlation

between the values contained in the class attribute and the

values contained in the direction attribute. Figure 45

displays the four different values contained in the class

attribute and the corresponding allowable values for the

direction attribute.

1 20. * .*..

Class Attribute Direction Attribute

local input

out p ut

global used

c ha n (ed

file read

write

hw read

w r i t e

Figure 45. Class and Direction Attribute Values.

As figure 45 shows, a local parameter is considered to

act as an input or output to the action entity. Since the

3 value of a global parameter is known throughout the program,

the area of interest is whether the action entity only uses

the value attached to the global parameter or if the action

entity actually changes the value. liles and hardware items

communicate with the action entity by being read from or

written to. It is not unusual for a data entity to possess

both associated direction values for a particular class

attribute value. For example, a structure chart process

could easily read in values t rom a f Il, perform

calculations using these values, then wri t- t he results back

to the file.

The ptype attri Ibut.e describes the nature of a

parameter which i nterac :; W i t 1 ac L ion ent i t y . I t b as i ca 1 1 y

121

identifies if the parameter, either local or global,

represents flag or data.information for tile action entity.

Data information would be such things as the name of a city,

a number required for a computation, or a month of the year.

Flag information would be such things as the answer to a

specific yes or no question such as the value true or false

for a parameter which indicate if a certain number is

bA negative or positive.

The order attribute identifies the order in which a

local parameter is received by the action entity. For

example, if a structure chart process interacted with three

local parameters, one of the parameter would have a order of

one, another would be the second in order, and the final

j S local parameter would have an order value of three.

A combination of the values contained in the project,

name, and pname attributes serve to uniquely identify each

tuple in the processio relation. The project attribute

differentiates between the various software projects

supported by the data dictionary. The combination of the

action entity name, contai ned in the name attribute, and the

data entity name contained in the pnajne attribute provides a

unique ident i fcr for all action and data interactions which

take place within an individual software project. Because

an action entity can interact with more than one data entity

and a data entity can be used by more than one action

entity, it requires the name values of both components to

122

..-....-.... V-. .v.. --..... -... "-....,-.,...-..-.........-.....v.:.'.,...-,.."...'.,-...........".....,..........-.....j.-, .

provide the unique identification property. For the above

reasons, the project, name, pname attributes serve as the

primary key for the process io relation.

In using the processio relation to support the

structure chart method of software representation, it is

necessary to establish a standard convention or framework

for referencing the information portrayed on a structure

chart diagram. r1he data entities which enter at the top of

the structure chart process are those entities which

interact with the action entity and are documented in the

processio relation. Figure 46 provides an example of a

structure chart diagram and how the process io would

document the data and action entity interaction.

Process
Get Total

N o_](.

No2 & Total

P rocess

Add

ProcessIO Pelation

Project Name Pnane Direction P Type Class Order

Team 1 Add Nol Input 1)ata Local

Team 1 Add N'o2 Input Data Local 2

Team I Add Total Ou tput Data Loca t 3

Figure 46. ProcessI0 Example 1.

123

As figure 46 shows, the proccssio relation documents

the interaction between, a structure chart action and dataA
entity which occurrs at the top of the box symbol for an

action. In this example, all data entity inputs or outputs

are received from or sent to the Get Total action entity.

Since none of the data entities included in the example

enter or exit from the top of the Get Total action entity,

It does not appear in the processio relation. The

relationship betwecn the data entities and action entity Get

Total is depicted in the pr_passed relation which will be

discussed later in this paper.

The situation depicted in figure 46 is a rather simple

example. There are situations which may occur in the

D structure chart representation in which the name of the data

entities documented in the processio relation would not

appear on the corresponding structure chart diagram. Such a

situation is depicted in figure 47.

Get Total Get Sum

Old Tota ol /
w Total " SU

Deposit C .

A d dJ

Figure 47. Structure Chart i)iagram.

124

.~

In the examiple depicted in fiure 47, th e Add process

accepts as i put two. da ti en t it ies representing whio1 e

numbers. The Add process will calculate the result of the

add it ion of these t:o numbers and output this result. The

structure chart depicted in figure 47 could be interpreted

in such a manner as to indicate that the process Add accepts

four inputs- Nol, I'o2, Old Total, Deposit- and creates two

outputs, Sum and New Total. From a structure chart point of

view, this interpretation would he correct. However, the

data dictionary relation processio is not intorested in the

number of higher level. processes which use the Add process

nor the names of the parameters passed to and fror the

process from calling processes. This inforrmation is

j 0 documen ted in the pr_ca 1 I relation n1d the pr pa so;d

relation which w [II be discu;sed in the following sections.

The process_io reIat ion documents the inputs needed and the

outputs produced by the Add proce s. In the .ituation

depicted in figure 47, the tool us-er would nec,d to specify a

name f or the two i n put nur.iber: a d tile output re.sult which

interact with the Add proces . 1 hCs . names would be

different froi iv of the nanes (lepictedl in the structure

chart in f ig"ure 47. '[his creation of uni .1t; for the input

and output pr;ibt(re ; tof process; Add i s needed to uniquely

ident ify th11 i trn(r characteristics of the process.

If th(, ti t i on as; depicted on the structure chart in

fiifure 47 w das; documented in the process i o retation, it

125

. _. --' i -'L " ., " • ".. . .".. .-- .. -. .- . ." . -. -

would give the erroneous conclusion that the Add process

required four input parameters to perform its function and

created two output parameters.

A possible set of processio entries which would I
correctly document the situation portrayed in figure 47 is

shown in figure 48.

It is important to remember that the situations

discussed previously represent problems encountered in

representing the structure chart representation in the data

dictionary. The solutions dicussed for these problems

* represent standard conventions which were established for

using the Data Dictionary Generation Tool and not standard

conventions which can be applied to the Structure Chart

method of software representation.

Process_1O Relation

Project Name Pname direction Ptype Class order

Team 1 Add Addendl Input Data Local I

Team I Add Addend2 input Data Local 2

Team 1 Add R esult Output Data Local 3

Figure 48. Process_10 ,;xarmple 2.

Pr call1 R elaIt io n.

The pr call relation depicts the use of or call to an

action entity by another action cntity. Often an action

entity, in performing its function, will use another action
entity to perform a calculation or other jobs. This is known

126

.4

0

as a call by one action enti-ty to another action entity.

The attributes which q:ake up tile prcall relation are

displayed in figure 49.

PrCall Relation

Projct alling Calls

* primary key

Figure 49. The PrCall Relation.

The project attribute identifies the person or group of

* persons responsible for this entry in the data dictionary.

The calling attribute identifies the action entity or

structure chart process which enlists the aid or calls

t0 another process in performing its function. The calls

attribute identifies the process used by the process

identified in the calling attribute.

The primary key for this relation consists of a

combination of all attributes contained in the relation.

'The project attribute is needed to differentiate betw,'een

* different software project; contained in the data

dictionary. Because a process can cal riore than one

process and a process can be used by more than one process,

* both the call iu, and calls attributes .ire needed in the

primary key to uniquely identify each tuple in the pr-call

relation. Figure 5) provides an example of a structure

chart diagram depicting the calling of p)rocesses 1)y other

127

. " •. . .'""" ."""""" • '. ". '" . " . ". ".' ." . ..' .." " .."." .."." .", < . ' . "-. . . ". " " . . "' .

processes and how the prca~l relation would document the

Process A Process 13

Process C Process D1 Irocess E

PrCall Relation

P roject Galling Galls

Feami A C

Teami A D

Te a i B 0

rTearni
B3

Figure 50. PrCall Pelation Example.

Pr Passed Relation.

The prpse relation describes; the (Lta ent ites scnt

to and returned f rom. an act ion entity when it is cal led or

used by another action ent ity. Thec attributes w.hich Make up

the pr passed relation are displayed in figure 51.

PrPassed Relation

Pr o je ct ba m DestLi na t ion7 1 or ce 00r d er Plype Cla7s]

p pr imar y k ey

Figure 51 . P r Pas sed(Relation .

128U

0 ,

The project attribute idntiiies; the person or group of

j persons responsible for t his 1entry into the data dictionary.

The name attribute identifies; the data entity or parameter

which is being transfered in a call between two processes.

The destination attribute identifies the process which is

receiving the paramete'r identified in the name attribute.

The source attribute identifies the process from which the

parameter was transmitted or sent. The order attribute

indicates the order of this particular parameter among all

parameters involved in this call between two processes. The

* p_type attribute indicates if the parameter being passed

represents flago or data information. The class attribute

indicates if the parameter identified in the name attribute

is returned by the called process to the calling process or

if the parameter is passed fron the calling process to the

called process.

A combination of the values contained in the project,

name, destination, and source attributes serve to uniquely

identify each tuple in the prpassed relation. The project

attribute serves to differentiate between different projects

which are contained in the data dictionary. Because a

parameter may be passed from and passed to several

different processes, the names of the parameter, its source

process, and its dest ination process are required to

uniquely identify a tuple in the pr_passed relation.

On a structure chart diagram, the prpassed relation is

129

interested in those data entities which depart and arrive

at the bottom of the box structure which represents a

process.

Figure 52 displays a sample structure chart diagram and

how the prpassed relation would document the passing and

return of parameter during calls between processes.

As figure 52 shows, the prpassed relation documents

the parameters passed between processes aurin, process

calls. The point of reference for documenting this

situation in the pr passed relation is the bottom portion of

the box which represents the calling action entity in a

process call.

13

•.

Got B iIlanc e

Old Balance H ew Ba lance

Withdrawal CX4 Balance
0 O l d O.

Ba l a n , e
Deposit

Suabtract Add

Pr Passed Relation

Project Name Destination Source Order P_Type Class

A old Subtract Get I Data passed
Balance Balance

A Withdrawal Subtract Get 2 Data passed
Balance

A New Get Subtract 3 Data return
Balance Balance "4

A Old Add Get I Data passed
Balance Balance

A Deposit Add Get 2 Data passed
fl a 1 a i i cce

A New Get Add 3 I)ata return
Balance Balance -'

* Figure 52. PrPassed Relation Example.

Parameter ,etat ion.

* The parahmeter relation describes the local- and Plobal

parameters, files, and hardware items which exist in a

structure chart representation of a software project.

Figure 53 provirdes a visual display of the attributes which

13 17

make up this relation.

Parameter Relation

Project IN'ame Data_Type Lo i High Data_Span Cla ss

* primary key

Figure 53. Parameter Relation.

The project attribute identifies the person or -roup of

persons responsible for this entry into the data dictionary.

The name attribute identifies tile paramneter, file, or

hardware item described by an individual tuple in the

relation.

The datatype attribute indicates the storage type

which would have to be assigned to a param:eter before it

could be described in terms of a progranming language. It

would not be unusual for this attribute to contain no value

for a specific parameter b)eing described. The dictionary

tool supports the inclusion of four values in this

attribute: integer, real, boolean,and character. However,

if these values to do sufficiently describe the parameter,

the user has the option of entering his own value for the

data type attribute.

The low and hih att ribute contain the iniimuni and

maximum values, respectively, that the parameter being

described in a relation tuple can assume. It is not unusual

for no value to be assigned to these attributes, as some

132

... ~ .~1jUKK:: ~ *.~ux.i~i*, .~J -. - - *- , -

parameter will not possess a minimum and maximum value.

Also, depending upon the stage of development of the

project, it may not be possibLe to specify these values.

The data_span attribute allows the tool user to enter a

sixty character description of the range of values a

particular parameter may assume. The attribute may not

contain any values depending upon the nature of the

parameter being described and the current stage of

development of the project.

The class attribute designates t"e entity being

described as either a file, hardware item, local parameter,

or global parameter.

This concludes our discussion of the relations which

support the structure chart method of software

representation. The next and final software representation

to be discussed will be the code representation. A great

deal of commonality exists between the relations which

support the code and structure chart methods of software

representation. The area of commonality between the two

is pointed out in the discussion of the relations supporting

the code method of representation.

Cod e Repres ita tion Rela t ions.

There are five renaining relations which support the

code method of soft.are representation which have not yet

been discussed. These rclat ions are the module, module_ io,

133

i 3.3.".

.
.. - -. ' "- --. .' .'- .,: . -- ' ., ...-' ' '. - -- ' '. - ' . ,' .- ' .'' '. , ." i .' ' ', i . ' .i- ' - . ., - ' ' -.. ---,. ., - ,,

m call, m pass, and variable relations. Each of these

relations will be discussed in the following section. The

code representation constitutes the actual translation of

project design into a functional programming language. The

code relations were designed to support a wide variety of

programming languages. The actual use of these dictionary

relation may vary depending upon the accepted conventions of

the language being supported.

Module Relation.

The rodule relation docu!ients the action entities found

in the code representation. The attributes which make up

the module relation are described in figure 54.

Module Relation

Project IName Number Filename Type Library

primary key

Figure 54. Module Relation.

The project attribute identifies the person are group

of persons responsible for this entry into the dati

dictionary. The name attribute identifies the particular

action entity being described by an individual tuple in the

relation. The number attribute contains the module number

associated with the action entity identified in the name

attribute.

The filename attribute identifies the name of the

134

.

computer system file where the actual code for this module

can be found. This attribute wrould be especially valuable

in locating a module which was part of a project where the

code was contained in several different file and linked

together for execution.

The library attribute indicates if the nodule being

described was created as part of the software project or if

the module is part of a system library of common module

which were already available for use. M'any system maintain

an extensive collection of commonly used modules for the

programming languages it supports.

The type attribute indicates if the module being

described is a function or a procedure. A procedure is an

action entity that is executed when called by another action

entity. A function is a action entity which returns a value

when called by another action entity.

The project and name attributes form the primary key

for the module relation. Since each tuple in the relation

describes a particular action entity, only these two

attributes are needed to uniquely identify each tuple in the

relation.

The module relation is very similar to the process

relation discussed in the structure chart representation

relations. Both relation s;eek to provide inforriation about

the action entities which constitute a software project.

135

•~~~~~ - .-. -

'odule_10 elation.

The module_io relation describes how an action entity

or code module interfaces with tile rest of the software

project. It identifies tile data entities the module

requires to perfori:i its function and the data entities which

constitutes the output of the module being described.

Figure 55 displays tile attributes which make up the

module io relation.

Hodule 10 Relation

Project I Name Vname Direction P type Class Order

primary key

Figure 55. ilodutIc_10 ,elation.

The module to relation is identical in foriat and

meaning to the processio relation discussed earlier. Both

relations describe tile interface characteristics of tile

action entities in their respective representations.

The project attribute identifies the person or ,roup of

persons responsible for this entry into the data dictionary.

Tihe name attr iute (identifies the odule or action entity

whose interface characteristicsr. are bein de,-criI)ed. The

vna e at t r im 1 i dent i iie,- a int Ia c(it i I or code \'; I iab le

which is either a reqii red input or an L output

136

for the action entity being described. The value in the

vname attribute can represont a file, local or global

variable, or hardware item.

Tile direction attribute describes the nature of the

interface between the data entity identified in the vname

attribute and the action entity identified in the name

attribute. The actual value contained in the direction

attribute will depend on the nature of the data entity. For

example, the direction value for a data entity representing;

a file or hardware item would be either read or write to

indicate whether the module writes to or reads from the

subject file or hardware item. In the same manner, a value

of input or output would be associated with a local data

to entity or variable. The value of interest with respect to

global variables would be whether or not the module or

action entity used or changed the value of the global

variable it interfaced with.

The ptype attribute indicates if a local variable

involved in interfacing with the action riodil In cont:iinq data

or flag information. The order attribute indicates the

order of this variable among the other local varibale which

form the intorface with the module.

The class att r i)ute indicates if the (ata entity

identified in th)e vname attribute represents a file,

hardware item, local variable or global variable.

'Ihe primary key for the module_ io relation is a

137

•"7-. 7 "-

0

combination of the values contained in the project, name,

and vname attributes. A combination of these valucs

uniquely identifies each tuple in the 1odule io relation.

M Call R'elation.

The m call relation indicates wh ich modules in a

software projcect call or use other modules and the narmes of

the modules called by a particular module. Figure 50

displays the attributes which make up the reicall relation.

Hi Call

Project I CallIn i Calls I Type

primary key

Figure 56. 11_Call Relation.
to

The mcall relation is similar in format and meanin, to

the pr_call relation discussed in the previous section on

relations supporting, the structure chart representation.

Both relation describe the calling or use of action entities

by other action entities.

lThe project attribute indentifics the ind iv idua or

group of individuals responsiblc for this entry into the

data dictionary. The calling; attribute idenLifies a 1,1odu~e

or action entity which calls or uses another action entity

in performing its function. The calls attributes identifies

the name of one of the action entities used by the code

module identifed in the calling attribute. The type

I D.

- ""S' ". . - i " v L . ' , - li

attribute designates the module identified in the calling

attribute as either a function or procedure.

The combination of the values contained in the project,

calls, and calling attributes uniquely identify each tuple

in the mncall relation. For this reason, these attributes

serve as the prinary kze for the relation.

11_Pass Relation.

The m pass relation describes the transfer of data

entities between modules that takes place w.,hen one module

calls or uses another module. The attributes which make up

the mpass relation are displayed in figure 57.

NPass Relation

Pro jectei.ie 1) 1a3,s ilat ion I.r.c. r(e r1 i1y p C l

primary key

Figure 57. 'I-Pass Pelation

The m_ pass relation is identical in format and a

similar in meaning, to the prpassed relation discussed in

the previous sections concerning the dictionary relations

which support tile structure chart riethod of software

rep1)reos e ntLat io n. oth relat ion (I cs-,c r i 1)e t ie transfer o f

information involved a call between two action entities. ..

The project attribute identifies the person or group of

persons responsibl)le for this entry into the data dictionary.

139

The name attribute identifes the data entity which is being

send or returned during a call between two nodules. The

source attribute identifies the module which sent or

transmitted the data entity and the destination attribute

identifies the module which receives thc data entity

identified in the name attribute. The order attribute

indicates the order of the data entity with respect to the

other data entities involved in the module call. The ptype

attribute indicates if the data entity or variable

represents data or flag information.

The class attribute indicates if the data entity is

passed from the calling module to the called module or if

the data entity is returned from the called module to the

calling module. This attribute also indicates if the value

being returned to the calling module is the result of a call

to an action entity which is a function. ,.hen a function is

called, the value returned by the function does not take the

form of a physical variable. The function simply returns

itself as a value to the calling module.

The primary key for this relation is a combination of

the values contained in the project, name, source, and

destination attributes. In order to uniquely identify all

tuples contained in tie rpass relation, the combination of

the values in these att-ri l, es are requiired.

Variable [,eJat ion.

'The variable relation describes tile individual data

140

0

S. .2

entities used in the code representation of a software

project. The attributes which make up the variable relation

are displayed in figure 58.

Variable Relation

Project Name D Data_ ype Low l igh Data_ pan n Class

* primary key

Figure _58. Variable Relaion.

The variable relation is identical in meaning and

format to the parameter relation discussed in a previous

section. Both relations describe the data entities for

their respective software representations.

d0 The project attribute identifies the person or group of

persons resp)onsible for this entry into the data dictionary.

The name attribute identifies the particular data entity

being described by a tuple in the relation. The data_type

attribute indicate the storage structure required to

represent the data entity in a particular programming

language. The low and high attributes identify the minimum

and maximum values the data entity can assume. The

dataspan attribute prov:ies a sixty character description

oI the range of values the idata entity can asS um. The

class attribute indicotes if the data entity identifIed in

the name attribute j a file, Local variable, global

variable, or a hardware item.

141

The combination of the values contained in the project

and name attribute provide a unique identifier for each

tuple in the variable relation. For this reason, these

attributes serve as the primary key for this relation.

This concludes the discussion of tile relations which

support the code representation. This also concludes the

discussion on the relations which comprise the data

dictionary database.

The following sections will examine some of the design

alternatives which were considered in the design of the

dictionary database.

Database Design Alternatives

Several design alternatives were considered during the

design of the dictionary database. Two of these

alternatives will be examined in the following sections.

The advantages and disadvantages of these alternatives will

be discussed and the rationale behind their rejection

presented. The two alternatives are representative of tle

types of design decision and tradeoffs which were

encountered during the dictionary database design.

Sharing Commo n Relations Among The Various Software

". ReL eta-Lirs Supporl-ed.

The first design alternative or decision to be made was

142

to determine if a relation should be allowed to contain

information about more than one software representation.

The current design of the di-ctionary database provides a

separate set of relations to support each of the four nethods

of software representation. As was continually pointed out

during the database design section, a great deal of

commonality exists between the relations which support the

various software representation methods. In some cases, the

relations are identical in both format and meaning.

For example, the format of the description, hierarchy,

history, and reference relations are identical in format for

both the action and data entities of all four software

representations supported by the dictionary.

If the concept of allowing a single relation to contain

information about more than one type of software

representation had been adopted, the number of relations

needed to support the dictionary could have been greatly

reduced. As an example, a single common reference relation

could have replaced eight individual relations which are now

included

This alternative possessed two main advantages,

reduction in the number of relations requi red to support the

data dictionary and possibly the reduct.ion of the aml:lount of

application software requi red to manip uate the contents of

the dictionary database. The reduction in application

software would have come about because the need to access

143

""

different relations based upon the type of software

representation used would not have been required. For

example, in the current database separate application

software is needed to perform retrieval and input operations

oil the description relations for each of the four software

representation supported by the data dictionary. Under the

comamon relations alternative a single software procedure

could have performed this function for all of the different

software representations.

Although the above alternative possesses its

advantages, the accompanying disadvantages were judged to be

sufficient to warrant rejection. There were three main

disadvantages to this alternative.

The use of the common relation alternative would have

decreased the efficiency of the data dictionary in

performing retrieval, modification, and deletion operations

on the dictionary database. The use of common relations

would have reduced the number of relations in the database,

but it would not have reduced the amount of information the

dictionary must maintain. In other words, the number of

tuples contained in the common relation would be equal to

the sum of the number of tupIcs contained in the various

individual relations it replaced.

U n(Ier the common relation alternative, the tradeoff

would have been between sever-i moderate . i ;ed relation or a

reduced number of extremely Iarge relations. The increased

144

0" " ° . . ' . • - ' - . " - / ° -% " " " . • . ' ' " ° " - ' ' ' - ' " " . " " " " " - " ° ' " ..." ' .. -.' ' . .- " , . . ', " " " " " " % . , ' '

size of the common relation would have, in general,|0
increased the amount of time to search the relation and

locate the particular tuple oF interest. This increase in

time would have correspondingly reduced the efficiency of

the modification, retrieval, and deletions of information

from the dictionary database.

Another disadvantage of the common relation approach

would have been the increased requirement for system memory.

When the dictionary information is maintained in individual

relations based upon the software representation and the

whether or not the entity being described represents data or

actions, there is no need to explicity state this

information in the relation itself. For example, the

pr_desc relation supports only the description of action
0

entities involved in the structure chart miethod of software

representation. If the common relation approach is taken,

two additional attributes must be added to each tuple in the

relation: one to identify the type of entity supported (data

or action) and one to identify the software representation

method (SADT, Code, etc).

The third and final reason for not utilizing the common

relation alternative had to do with future development of

the automated data dictionary tool. 2y ma i nta i i ng t he

i nd iv i dual re Ia tions for each represenLtit i on, the menor y

requi rements an d efficiency constraints can he bet ter '

studied for the di f ferent representation supported.

1.45

.

,. .., v .v-. . -.. --- . .-. - -.-. -..-,.. . .-., . .. -. .- .-.--, .. ., ., ,. ... • . -.. . . .- ,..

Use of Attributes In One Relation to Indicate the

Existence of Infori:lation In Another Relation.

The use of attributes in a relation to provide

information about the information which existed in another

relation was actually implemented on a small scale during

the early development of the data dictionary. As an example

of this concept, figure 59 displays two versions of the SADT

dataitem relation. In fi,ure 59, (A) represents this

relation as it now exists in the dictionary and (B) displays

an alternative desiin.

(A) DataItem Relation (Actual Format)

Project Nare DataType Low Iligh I DataSpan

i (B) DataItemn Relation (Alternative)

Project Name Data_ Low High Daa-IsValue Is- Is_
Span Type Set. Alias Reference

Figure 59. DataItem Relation Design Alternative.

The last three attributes displayed in part B of

figure 59 constitute the only differences between the forms

of the dataitem relation displayed in figure 59. The three

attributes would contain a value which represented true or

false (T or F"). They would indicated if any information

about the data item identi fied by this tuple existed in the

value_set, alias, or reference relations for SADT data

entities.

146

The advantage of this alternative is that it allows

these excess attributes to act as a flag or signal for the

ri dictionary application sdftware. For example, assume that

the dictionary is attempting to retrieve information about a

particular data item. Upon accessing the proper tuple in

the dataitem relation, the application software can

determine if it is necessary to access the reference, alias

and value-set relations. If the value in these attributes

is false, the application software has increased its

efficiency in performin, its operation because it knows it

does not need to search these relations for additional

information.

The disadvantage of this alternative is that it greatly

reduces the data independence of the relations. Now the

database relations are closely tied to the applications

software. Another problem introduced by this alternative is

the potential for data inconsistency. For example, if the

value-set relation is modified so that it contains

information about a particular entity and the attribute in

the dataitem relation is not changed to reflect this

change, the information in the valueset relation will exist

in the dictionary, but never be retrieved. These two

disadvantages far outweighed any improvement in efficieny

which could be gained by its use. For these reasons, the

alternative was rejected.

The following section will discuss the design of the - -

147

.......... *..*..*.*..._......2.

data dictionary user interface or the user's view.

Design o f the User Int6rface and User's View o.f. U Data

Dictionary.

This section will describe the manner in which the data

dictionary user interacts, through application software,

with the dictionary database. Several different methods or

dialog styles can be used in desgining an effective user

interface. "Dialog styles describe the nature of the

interface between the system and the user" (20:19C). Some

of the most popular dialog styles used in designing an

effective user interface are: question and answer, command

langtage, menu, and input forii/output form (20:199-202).

With Q/A (question/answer) dialogs, the systems asks

the user a question. Tile user responds to this question.

This process continues until the system obtains sufficient

information to perform the desired operation for the user.

"Q/A dialogs tend to be most successful for inexperienced or

infrequent users..." (20:200). Q/A dialogs tend to be

least successful for sophisticated or frequent users, who

get tired of proceeding through the questions.

A popular dialog style is that of using menus. A menu

dialog lets the user select form a menu of alternatives

instead of havinp, to type commands or other inforr:ation.

"'fhe menu dialog ,;Ce eIs to be qui Le effective for

inexperienced or infrequent users..." (20:200).

148

p i ~

..- '.-""-.'-.-.'.'-.'- - -''. "- "" .. ."'' "....... . ".".-.-...... .. '

"The command language dialog style uses a command

language for invoking system functions. "The usual format

of command dialog involves verb-noun pairs (e.g. Plot Sales)

with a short spellings (e.g. six to eight characters) for

the nouns and verbs(20:200)." "For simple applications, a

command language is easily learned, but it will probably

need to be relearned by infrequent users. For complicated

applications, a command language can easily become a

programming language thereby requiring more skill to

use"(20 : 200).

Input form/output form dialogs provide input forms in

which the user enters command and data, and output forms on

which the system provides responses. "Input form/output

* form dialogs can be very successful if there is a

correspondence between the input/output form ... and paper

forms or thought patterns which are fami]iar to the user"

(20:202).

The data dictionary generation tool utilizes a

combination of the question and answer, menu, and command

language dialogs to provide user interface with the system.

The question and answer and menu dialog styles provide the

primary interface between system users and the data

dictionary database. These styles allow the user to

communicate the information the system needs to add, delete,

modify, and retrieve data dictionary information from the

database. The command language dialog is primarily used in

149

- -*%-*

.:.... :• ,..-.......:.....:.......................... ..., .. ,.... , ..,

performing dictionary maintenance or administrative

functions. The query language used by the database

management system which supports the dictionary database

forms the command language dialog. These commands are used

by dictionary administrator or maintainer to modify,

delete, or add relations in the dictionary database.

The Data Dictionary Generation Tool provides the system

user with a single view or method of looking at the

information maintained in the dictionary database. This

view consists of the definition of a particular data action

entity for any of the four represe tations supported. The

system user is not aware of the storage structure used in

the dictionary nor are they aware that the data dictionary

j information about a particular entity is scattered among

several different relations in the database. As far as the

user is concerned, the data dictionary is simply composed of

the definitions of the action and data entities associated

with a given softw.:are representation for a project.

In the section on Data Dictionary Information Content

the information content required to support the data an d

action entities for all four software representation were

discussed. The information e.lemen ts which were required for

each of these action and data entities constitute the entity

definition. These i n format ion el eicn t s were d isp1 ayed in

figures 10 and 1 1.

''hen a dictionary user i nputs an entity definition, the

15

150 .-..

SI

dictionary, by neans of the question and answer and mienu

dialog styles, obtains the information necessary to satisfy

all the information content requirements for the specific

entity type and software representation. !.!hen the user

retrieves information from the dictionary, the system

provides the definition of action or data entities

maintained in the dictionary database. For example, if a

user wanted to know the inputs and outputs associated with

an activity in a software project which was represented by

the SAUT representation, the system would need to obtain the

.0 following information: 1. That the inforamt ion dealt with a

action entity, 2. That the SADT software representation was

used, 3. The name of the software project involved, and 4.

The name of the action entit,. Uhen this information was

received by the system, it would respond by retrieving the

complete definition of the action entity and presenting it

to the user. The information desired by the user, in this

example the inputs and outputs associated with a SADT

activity, would be contained in the definition retrieved

from the dictionary database. In other words, all

dictionary operations, with the exception of odification,

consider the defi nition as the basic inforr.iational unit to

be placed in and retrieved from the dictionary database.

The modification operation does allow user to chanoe or

update components of entity definitions, but all other

operations only manipulate entity definitions.

151

• ~~~.-.. -.,- - .-..... ..-...'.-,.. . -...?.,: i-.2 L ?. . .i .'. - i - -.i .-..-. .,
...........'•

Data Dictionary Generation Tool Structural 1Iodel

The objective of the Data Dictionary Generation Tool

structural model is to illustrate the hicrarchial

composition of the Data Dictionary Gencratlon Tool

components into a functional environment. This structural

model serves as the framework for the development of the

Data Dictionary Generation Tool. This model identifies the

managerial and functional modules needed to support the

objectives of the system as stated in chaptcr two of this

paper.

i-lethodology Utilized for The Structural iiodel.

Three desigjn techniques are candidtes for representin.g

the structural model of the Data Dictionary Generation' Tool.

These techniques are IB,'s lIPlO (l'ierarchy plus Input

Process Output), Higher Order Software's HOS technique, and

the classical structure chart technique. All of the above

named techniques utilize a hierarchy of design modules and

spec ify the inputs. and out puts of each rmiodule

The IIIIPO technique uses a special di-raplh called a tree

to illustrate it's Function Chart (25:139). An example fo

a function chart is displayed in figure 60.

152

. - .-j
:.".- -. : . :-.:-:.- : .-.. . ..-.-- ..-$ --. . -..-. -.. .- -... ". -. ,- : . .-

0f

Figure 60 Sample 1IIPO Function Chart

In figure 60, module A is the main module and it calls

modules B and C. Each module is described in greater detail

by the 11O (Input Process Output) chart. This chart

identifies the inputs, processes, and outputs of each

module. A sample IPO chart is shown in figure 61.

Input Process Output

Parameters Algorithmic Parameters

Description

Figure 61. IPO Diag, ram Sample.

The disadvantag;e of the H1IPO technique are that it does

not specify an ordering or conditions on the calling of

subordinate rout ines nor does it depict the pas.s 11 of

parameters bcLwccn modtl ic:;.

The I110s technique uti izes n hicra rchinl structure

similar to the function chart displayed in fi,ure

llowever, each box rcprcsents a function with the inLputs and-

1 5 'j

. --.

the outputs placed to the left and right of the box

respectively. This use of tile box is illustrated in figure

62.

Input(s) Function iamc Output(s)

Figure 62. 11OS Function Specification.

The disadvantage of the 11OS technique is that it does

not differentiate between control and data parameters.

The structure chart method also uses the basic function

chart hierarchy shown in figure 60. In addition, the

structure chart method possesses conventions for

illustrating the passing of parameters between modules and a

means of differentiating heween data and control parameters.

Of three candidate methods for representing the

structural model of the tool, the structure chart method is

best suited for display the important aspects of the

structural model. The Data Dictionary Generation Tool

Structural Ilodel will need to clearly depict the passing of

parameters between the various functional modules and the

dictionary database. Sincc this is a strong point of the

structure chart repre,;e ntiat on, i t wi l I erve as the

methodology for the s t ruc i u ra I model. ,ec a u 1;e the

structure chart Method is one of the four representations

support by the dictionary, its selection is even more

'154

appropriate as the method of depicting the tool's structural

model.

Data Dictionary Generation Tool Structural Nodel

The structural model is a specification of the

functional and manaccrial modules which make up the Data

Dictionary Generation Tool. The structural model provides a

functional framework for the application software needed to

meet the objectives of the tool and to provide an interface

between the tool users and the dictionary database.

The structural model, with some exceptions, display all

the functional modules required to meet the objectives for

tile tool as stated in chapter two. The above r.entioned

exceptions are those dictionary maintenance and ..

administrative functions performed through the use of the

database management system (DBM S) which supports the

dictionary database. These functions will be discussed in

chapter 5 when an the lM:IS selection and use are discussed.

Figure 63 displays the top level of the Data Dictionary

Generation Tool structural ilodel.

User Inputs System Prompts

0! ,;y t e m Pespon:;es

l Per forii b ta ta
)i ct ionary
"u i nc t i o n- .S.0 ..U

Figure 63. Top Level Structural iodel (Structure Chart).

155

0 - . ' .' ." i " ..." ." .-¢ ' ' .L .' - .? -" ...¢ ' - -- .. .i .? . .. ' - -. . .? . -.. -...' -. " ..i i : . -?

0I

The tool user is provided with prompts by the system.

These prompts are in 'the form of menu selections and

questions. The user inputs are the tool users answer to the

system prompts. Based on th, user's; input, the tool will

perform the requested data dictionary operation. These

basic operations will include the addition, retrieval,

deletion, modification, listing, and printing of information

contained in the dictionary database. Figure 64 presents

the decompostion of the structural model top level.

Selection Of

Dictionary

Operation

4I I II.

Input Entity Retrieve IModify Entity
Definition Entity Definition

Def inition
1.2 1 .3 1 .4

List Entity Print Ent. it y
Names Definitions

1.5 1.6

Figure 64. Perform Data Dictionary i'unctions (Structure

Chart) .

In figure 64 the Selection of Dictionary Opera tion

module, represents the managerial modules which, based upon

156

the user's inputs, select the correct functional rodules

required to satisfy the user's request. The remaining

modules represent the collection of nodules which perform

the basic dictionary operations on the particular software

representation and entity type as indicated by the tool

user. For example, the Input Entity Definition module is a

representation of all the functional modules which query the

user for the information required to formulate a entity

definition, format this user information in a forti

acceptable by the dictionary database, and append this

information to the individual relations which make up the

dictionary database.

A separate collection of functional modules exists to

support the dictionary operation for each entity type

(action or data) and software representation supported

(SADT, Data Flow Diagrams, Structure Charts, or Code).

Figure 65 displays the decompostion of the Selection of

Dictionary Operation modulc initially displayed in figure

64. These modules perform the manaperial tasks necessary to

determine the three pieces of control information required

to select the correct functional module to perform the

operation desired by the tool user. The Determine Operation

from User Nodule presents the tool user with a menu of

operation which the tool can perform. The user selects the

desired operation by responding to the menu with the number

associated with the desired m: enu option. The module accepts

157

:: ... :.......:.,..,......................:................................. ,...............:...... ..-:..:.:...........,: :::"

the user response and passes it to riodule Determine Entity

Type From User.

This module queries the tool user to find out if the

entity of interest is an action or a data entity. This

module passes this information, along with the selection of

operation information, to module Determine Software

Representation From User and Call Functional Nodule.

Determine Operation
From Tool User

* 1.1.1

j Operation

Determine Entity
Type (Action or

Data) From User

1.1.2

Operation
Entity Type

Determine Software
Representation froiii
User and Call

Functional Module
1 .1 .3

Figure 65. Selection of Dictionary Operation (Structure

Chart).

158

". i"..".'2.o--.--.'".'.--.-..-..".".."....-.."-.-'-....-.. -'.-.-'-..-..-...-..-.. -.-'V"..'..-

This module will query the user to determine which of

the four software representations supported by the tool the

user wishes to deal with. When this information is obtained

from the user, this module is in possession of the three

pieces of control information needed to select the proper

functional module to perform the user's desired operation:

dictionary operation, entity type of effected entity,

software representation used to support the entity. Based

upon this information, the module calls the proper

functional module.

Figure 66 displays the logical decomposition of the

Input Entity Definition module initially displayed in figure

64. The modules displayed represent the eight functional

groupings of modules needed to input an entity definition

for both the action and data entity for all four software

representations supported by the data dictionary.

15
0 9"]

Input SADT Input SADT Input DFD

Activity Data Item Bubble
Definition De initi-on Definition
1.2.1 1 .2.2 1 .2.3

Input DFD Input SC Input SC
Data Flow Process Parameter
Definition Definition D)efini tion
1.2.4 1 .2.5 1 .2.6

Input Code Input Code
Module Variable
Definition Definition
1 .2.7 1.2.8

Figure 66. Input Entity Definition (Structure Chart).

The modules displayed in figure 66 would be called by

the managerial modules displayed in figure 65 . The

functional modules represented by each of the modules

displayed in figure 66 would obtain entity information from

the tool user, format this information for addition to the

dictionary database, and add this information to the

appropriate database relation in the dictionary database.

Figure 67 displays the functional modules which

represent the Ic -ical dccomposition of nodule Input SAt)T

Activity Definition initially d isplayed in f i-,ure 66. T1he

modules displayed in figure 67 query the tool user to obtain

information for a particular database relation which

160

"i"o*, "o"-" . -"." * '-" '°. °"%".".".".' ,.""", '°" " . " ... ".''" . " ' .. "" - ' " " - • "

contains a portion of the definition for a SADT activity.

Once this information is obt.iined, the individual modules

will format this informzation in a manner which is acceptable

to the database and append a new tuple to tile subject

rela t ion.

In Data Dictionary Database section, the individual

relations which support the action alld data entity

definitions of the various software representation were

described and discussed. These modules perform the actual

function of placing information in these relation to support

the definition of the subject entity.

The Obtain User Input to Append To Activity Relation

and Control Input Of SADT Activity Definition module serves

the dual role of actually adding information to a dictionary

database relation and acting as the control module for the

input of a SADT activity definition. From this module, the

other functional modules are called which will add

161

Append To Activity

Definition And
Control Definition
Input
1 .2.1 .1

Activity7 I Project Name
T up Ic Ti E ntity Name

Append To Append To Append To
Activity_IO A_Hlierarchy AHistor
1.2.1.2 1.2.1.3 172.1.4

Activity IO /A lierarchy ,.A_ History
Tuple 0/ Tuple -Tupc

Append Io Append To Append To
A Reference A Alias A Desc
1.2.1.5 1.2.1.6 1.2.1.7

AReference AAlias IADescT- 0_ e PTo ou\ /
STupile ~,Tuple? /pTuple

Data Dictionary)ataba.e 1.
Figure 67. Input SADT Activity Definition (Structure Chart).

information to other relations in the database. This module

also obtains from the user two im portant pieces of

information which are passed to the other modules, projcct

name and entity name. Uhen the relations were discussed in

Data Dictionary Database Section, two attributes were always

included in every relation in the dictionary database. The

162

.° -

............................... . . .

.

"______________"-__" .°"°' "" ff '" °" " ' '.- ° t°- . o - .- ''
" ' - -

-"".- -°- .-'",° - ."'"% ' "' '''° " ' " '" -" " . "*. .

project name and the name of the entity being described.

These two attributes were also a component member of the

primary key for each relation discussed.

Each module collects the required information from the

user to complete the attribute values of the particular

relation it supports. When this is complete the modules

interact with the database a append a new tuple to the

appropriate relation in the dictionary database.

The previous figures and discussion have displayed a

portion of the structural model of the Data Dictionary

Generation Tool from the abstract high level of the model

down to the actual low levl functional modules for one

particular operation for one particular representation and

tO entity type. The remainder of the structural model is

contained in Appendix B.

This concludes the preliminary design of the Data

Dictionary Generation Tool. In the following chapter the

detail design phase of the project is discusned.

163

I7
.

.
)° - - . ' . '. .. ,. ".__.__°_'.' ', .. °_ " _ _.- . _ , . ." •~ - • . . - - . .- •. -.

IV. Detailed Design

Introduction

The detailed design stage of the software life cycle

deals with the development of algorithms or procedures for

performing the functions or tasks assigned to each module

specified during tile preliminary design. The modules

specified during preliminary design represent the functions

the system must perform in order to satisfy the objectives

and requirements identified during the requirements

definition stage of development. The main effort during the

detailed design stage of development is the formulation of

precise algorithms which will actually accomplish the

designated tasks or functions of the modules identified

during preliminary design. The objective of this chapter

is to present and describe the algorithms associated with

the functional modules of the Data Dictionary Generation

Tool.

The algorithms for the Data Dictionary Generation Tool

are expresssed in Structured English (21:48-49). In

Structured Enlish, 'ngli sh lan gua e phrases are uscd to

represent the control constru cts required to express

functional algorithms.

Two other software eni, ineering opt ions that can be used

to specify algorithms arc c)cision Tables and Decision

164

°S . - • , + " . . ' .- ." • + .% + -. - + + , _ -.-.+ + . . , ° " ° . . % + .% , . - -.. ., ' . . '

Trees (21:49). Neither of these two methods are very

applicable to tile development of the algorithms for the Data

Dictionary Generation Tool. Because of its use of English

phrases, the Structured English method is flexible and easy

to learn and use. For these reasons, Structured English is

the most appropriate method to use in expressing tile

algorithms for the Data Dictionary Generation Tool.

As stated earlier, the entity definition constitutes,

from the user's point of view, the basic informational unit

of the data dictionary. The definition of an entity is

maintained in the dictionary database by several different

relations. Each of these relations maintain a subset of the

information required to formulate an entity definition. The

individual functional modules of the Data Dictionary

Generation Tool are designed to perform a single dictionary

operation (delete, addition, modification, print, modify,

retrieve) on a single database relation. Several of these

individual relations constitute the complete dictionary

definition for either an action or data entity for one of

the four software representations (SADT, Data Flow Diagrams,

Structure Charts or Code) supported by this tool.

A great deal of commonality exists between the

functional modules which perform the same dictionary

operation. For example, the functional module which adds

information to tile Activity relation in support of an SAL)T

action entity will utilize basically the same general

165

-:7.:. -.

..-. ".-..-........v.-....-.'..v ..--. .- '..-.v,-..". v.'.".. ' "."., ""v-,"i-"

algorithm as the functional module which adds information to

the Variable relation in support of a code data entity

definition. This commonality of algorithms exists

irregardless of the type of entity or software

representation involved.

For the above stated reasons, the algorithms for the

functional modules which make up the Data Dictionary

Generation Tool will be discussed in terms of tie seven

major categories of functional modules which correspond to

the seven basic data dictionary operations. These seven

categories are: selection of the dictionary operation, input

of an entity definition, retrieval of an entity definition,

modification of an entity definition, listing of entity

40 names, printing of entity definitions, and deletion of

entity definitions. Each of these seven categories of

modules and their corresponding algorithms will be discussed

in the following sections. The first category to be

discussed will be the selection of dictionary operation

modules.

Alorithms for Th e Selection of Di c tionary OJ)Uerat ion

Mod u I es

The Select ion of Di ctionary Operation lodu les determine

from the tool users tie exact dLata dictionary operation they.

desire to perform anid on what portion of the dictionary

166

.i- .-- ¢ •. . .-. 'v 7... ,.. .. . - .., .* - ~. .. -- - -

database this operation is to take place. These modules

then call or select the appropriate functional modules to

perform this operation. Three pieces of information are

need by these modules in order to correctly identify tle

proper functional module to meet the tool users needs, the

type of operation (addition, deletions, list, print,

modify,or retrieve), the entity type of interest (action or

data), and the software representation being used (SADT,

Data *Flow Diagram, Structure Charts, Code). When these

three pieces of information are obtained from the user, the

Selection of Dictionary Operations modules can select the

appropriate functional module to accomplish the users

desired operation. The Selection of Dictionary Operations

modules consist of the modules 1.1.1, 1.1.2, and 1.1.3 in

the structural model of the Data Dictionary Design Tool

specified during the preliminary design. The algorithm for

these three modules,; are presented below.

Selection of Dictionary Operation Algorithm

(Module 1.1.1 Determine Operation From User)

* DISPLAY Menu of Dictionary Operations
GET User Operation Selection
CALL Module 1.1.2 (Operation)

(Iicdule 1.1.2 Determine Entity Type From User)

*DISPLAY Menu of Entity Ty pes(Data or Act ion
GET User Entity Type Selection
CAll Module 1.1.3 (Operation, Entity Type)

(Hodule 1.1.3 Determine Software Representation And Call
Functional Modu 1 e)

167

.............. " .°. .

DISPLAY Menu of Software Representations Supported
(SADT, DFD, Structure Charts, Code)

GET User Representation ')election

IF Operation=Input" and Entity Type=Action and

Representaton=SADT THEN
CALL Input SADT Action Entity Definition

IF Operation=Delete and Entity Type=Data and
Representation=Code THEN

CALL Delete Code Data Entity Definition

The IF TtHEN statement for thi.s module continue until every

possible combination of entity type, dictionary operation,

and software representation have been tested or the correct

combination is found and the functional module which

controls the accomplishment of the user's desired operation

is called.

This completes the discussion of the algorithms which

accomplish the Selction of DIctionary Operations modules

jO function. The next category of modules and algorithms to be

discussed are the Add Entity Definition modules.

Add Entity Definition

The Add Entity Definition modules query the tool user

for the necessary information to formulate the definition of

an entity. These modules then format this information in a

manner which is acceptable to the database relations and

append the information to the proper relation in the

database. There are eiphmt sets of entity definition input

module wi thi n t ho' Data 1) i.c t iona r y Genera t ion I1ool. One set

of modu Ies for both the action andi data ent it ies of the

four software representations supported. Each set of

168

.

functional modules consists of the individual modules

responsible for appending ne' information to each relation

which maintains information for the definition of a

particular entity type and representation and a control

module which executes the calls to these modules based on

user inputs.

In actually, the control modules performs a dual role.

It not only controls the input of the entity definition, but

also appends a database relation. The presentation of the

algorithm for a control module will serve to present not

only the algorithm used to control the input of an entity

definition but also to display the algorithm need to add

information to an individual database relation. To present

these algorithms, the control module for inputting an SADT

action entity defintion will be displayed. This module is

the Append To Activity Relation and Control Definition Input

module (1.2.1.1) specified in the preliminary design

structural model. The algorithm is displayed below:

PROMPT User For Project Name
GET Project Name
PROMPT User For SADT Activity Name
GET Activity Name
PROMPT User For Activity Number
GET Activity Number
INPUT NEW TUPLE IN Activity Relation

Project Attribute=Project Name
Name Attribute=Activity Name
Number Attribute=Activity Number

CALL Append To Activity_IO Relation(Project Name,
Activity Name)

CALL Append To ._. Desc Relation(Project Name, Activity
Name)

169

CALL Append To AHierarchy Relation(Project Name,
Activity)

PROMPT User, Do Any References To Previous Development
Stages Exist For This Activity?

GET User Response
IF Response=Yes THEN

CALL Append To AReference Relations(Project Name,

PROMPT User, Do Any Alias Names Exist For This
Activity?

GET User Response
IF Response=Yes THEN

CALL Append To AAlias Relation(Project Name,

Activity Name)
CALL Append To AHistory Relation(Project Name,

Activity Name)

This algorithm displays both tile control of a defintion

input operation and the actual addition of information to a

database relation. Not all relations which support an entity

definition will be called during an actual input operation.

As the algorithm displays, in some cases the information

maintained in a relation may not exist for the definition

of a particular entity. This concludes the discussion of

the algorithms which support the Input An Entity Definition

modules. Tile next category of functional modules to be

discussed will be the Retrieve Entity Definition modules.

Retrieve Entity Definition Algorithis

The Retrieve Entity Definition functional modules

obtain from the tool user the necess,-ry information to

identify the particular entity definition the user wishes to

retrieve. These modules then extract the relevant

information from the database relations which contain the

170

entity defintion and diplay them to the tool user. As in

the Input Definition modules discussed in the previous

section, there are eight sets of Retrieve Definition modules

contained in the Data Dictionary Generation Tool. A

particular set of these modules will retrieve either an

action or data entity definition for a particular software

representation. The individual modules which perform the

definition retrieval operation for a particular entity type

and representation will interact with one of the dictionary

database relations which maintains a portion of the entity

definition. One of the modules in each of the eight sets of

Retrieve Definition modules will, in addition to retrieving

information from a database relation, also act as the

control module for the entire definition retrieval.

An examination of a Definition Retrieval Control module

will display not only the algorithm for controling

definition retrievel, but also the algorithm for retrieving

information from a database relation. The following is the

algorithm for the Retrieve From lodule Relation and Control

Definition Retrievel module which is module number 1.3.7.1

in the structural model developed during the preliminary

design stage. This module controls the retrieval of a

action entity definition from the code software

representation.

171

• .. .

Retrieve From Module Relation and Control Definition
Retrieval (1.3.7.1)

PROMPT User For Project Hame
GET Project Name
PROMPT User For The Name Of The Entity To Be Retrieved
GET Entity Name
WRITE TO TERHINAL Code Module Defintion
WRITE TO TERMINAL Entity Name
WRITE TO TERMINAL Project Name
Retrieve From Relation Hodule the Value Contained In
Number Attribute for The Relation Tuple Where
Project Attribute = Project Name And Name Attribute =
Entity Name.

WRITE TO TERMINAL Entity Number . 4
CALL Retrieve From 1 Desc Relation
CALL Retrieve From Module 10 Relation
CALL Retrieve From M Alias Relation
Call Retrieve From H Call Relation
CALL Retrieve From N' Pass Relation
CALL Retrieve From H Reference Relation
CALL Retrieve From HHierarchy
CALL Retrieve From HHistory Relation
CALL Retrieve From M-Alg Relation

When attempting to extract information from a relation,

sufficient information must be provided to identify the

particular tuple or tuples in the relation where the desired

information can be located. This requirement is fulfilled

in the above algorithim by using the project and entity names

as qualifiers in the retrieval from the Module Relation.

The control portion of the algorithm simply consists of a

sequential call to every relation in the database which

might contain a portion of the entity definition.

This concludes the discussion of the algorithms for the

Retrieve Entity Definition functional modules. The next

category of algorithms to be discussed will be those for

the Print Entity Definition modules.

172

. '-. . ..

Print Entity Definition Algorithms

The Print Entity Definition module write the entity

definition for all action or data entities associated with a

particular software project to file. The tool user can then

utilize the procedures associated with the particular

operating system supporting the Data Dictionary Generation

Tool to obtain a printed copy of the entity definitions.

There are, as in the previous categories of functional

modules discussed, eight sets of print modules associated

with the Data Dictionary Generation Tool. Each of these

sets of functional modules support the printing of the data

or action entities for one of the four software

representations supported by the dictionary.

to The algorithm for writing the entity definitions to a

system file are similar to the algorithms used to retrieve

entity definitions from the database. The only difference,

is that instead of writing the entity definition to the

terminal screen, these functional modules write the

definition to a system file. 'File Print E'ntity Definition

modules obtain the name of the project of interest from the

tool user. These modules then, using project name as a

search key, obtain from the dictionary database the name of

every entity associated with this project which is of the

entity type and software representation supported by this

group of functional print modules. These entity names are

found by searching the main relation for each combination of

173

entity type and representation. These main relations are

those relation which serve as the storage relation for

identification of entity definitions supported. The eight

main relations are displayed in figure 68 and their

corresponding entity type and software representation are

also presented in figure 68.

The entity names obtained from the search of the main

relations are written to a system file as they are retrieved

When the retrieval of entity names is complete, the modules

open the file where these entity names are stored and one at

a time send the entity name to the functional modules

which retrieve the entity definition from the database

relations and write the definition to a system file. This

process continues until all entity definition have been

retrieved and written to the system file.

Iain Relation Name Entity Type Software Representation

Activity Action SADT

Data Item Data SADT

Bubble Action Data Flow Diagram

Data Flow Data Data Flow Diagram

Process Action Structure Chart

Parameter Data Structure Chart

Module Action Code

Variable Da t a Code - -.-

Figure 68. Hain Relation For Printing Entity Definitions

174

...

The following two algorithms will display one of the

control module for The Print Entity Definition Functional

modules and one of the actual functional modules involved in

the operation. The algorithms displayed are for the Control

Print Of SC Parameter Definition (1.6.6.1) , which controls

the printing of structure chart parameter definitions, and

for the Print PAlias Relation module (1.6.6.5) which prints

to the system file any alias names associated with the

parameters whose definition are being printed.

Control Print Of SC Parameter Definition IModule 1.6.6.1

PRO!.MPT User For Project Name
GET Project Name
OPEN File A For Writing
Retrieve The entity name for all tuples in the
Parameter Relation Whose Project Attribute Value

Project Name
Write entity names to File A

OPEN File A For Reading
WHILE NOT End Of File On File A

READ Next Entity Name In File A

CALL Print Parameter Relation(Project, Entity)
CALL Print P_Desc Relation(Project, Entity)
CALL Print PHierarchy Relation(Project, Entity)
CALL Print PReference Relation(Project, Entity)
CAll Print Process_ I0 Relation(Project, Entity)
CALL Print Pr Passed Relation(Project, Entity)
CALL Print P Alias Relation(ProjectEntity)
CALL Print P ValueSet Relation(IrojectEntity)

CALL Print P listory Relation(Project, Entity)

Print Alias Relation Miodule 1.6.6.5

(Values for Project and Entity Name are passed to this

module from the control functional module displayed above.)

Retrieve From PAlias Relation The value for the Namel

175

°% -..

Attribute Where The Project Attribute = Project Name
And the Name2 Attribute = Entity Name

WRITE TO FILE B Alias Names:
WRITE TO File B Name.l attribute value

This concludes the discussion of the algorithms for the

Print Entity Definition Functional modules. The next

category of algorithms to be discussed are those associated

with the Delete Entity Definition Functional Hlodules.

Delete Entit_ Definition Algorithms

The Delete Entity Definition module remove an entity

definition from the dictionary database. There are eight

different sets of Delete Definition functional modules

contained in tile Data Dictionary Generation Tool. Each set

of modules handles the delete definition function for a data

or action entity for each of. the four software

representations supported by the dictionary. The individual

functional modules will delete the appropriate tuples in an

individual relation in the database. As in the previous

categories of modules, one module will act as the control

module for the definition deletion. A control module and a

functional module will be used to display the algorithms

associated with the deletion of an entity definition from

the dictionary database.

The modules described in the following algorithms are

the Control SC Process Definition Deletion module

(1.7.5.1), which control the deletion of a action entity

definition in the structure chart representation, and the

176

,-..
* y . . c -. tt . s c . < . 2 . -. " * .. - .. C . * . . - . . " • * ,, . ' - * " * . " -""

Delete From Process Relation module (1.7.5.2) which deletes

the tuple from the Process Relation which supports the

definition of a particular entity definition. The

algorithms for these two modules are displayed below

PROMPT User For Project Name
GET Project Name
PROMPT User For Entity Name
GET Entity Name
CALL Delete From Process Relation(Project, Entity)
CALL Delete From Process_10 Relation(Froject, Entity)
CALL Delete From PrCall Relation(Project, Entity)
CALL Delete From PrPassed Relation(Project,Entity)
CALL Delete From PrHierarchy Relation(Project, Entity)
CALL Delete From PrAliwq Relation (Project, Entity)
CALL Delete From PrReference Relation(Project, Entity)
CALL Delete From PrDesc Relation(Project, Entity)
CALL Delete From PrAlg Relation(Project, Entity)
CALL Delete From PrHIistory Relation(Project, Entity)

Delete From Process Relation (1.7.5.2)0

(Values for Project Name and Entity Name are passed from the

Control module displayed above.)

DELETE From the Process Relation The Tuple
WHERE Project Attribute = Project Name and Name
Attribute = Entity Name

This concludes the discussion of the algorithms which

support the deletion of entity definitions from the

dictionary database. The next section discusses the

algorithms associated with the modifiy entity definition

cataegory of functional modules.

177

.

- - - - - - - - - - -- - - -. -" •.i

Modify Entity Definition Algorithms

The Modify Entity Definition Functional modules allow

the tool user to modify or change the contents of an entity

definition which is maintained in the dictionary database.

There are eight sets of modify definition functional modules

contained in the Data Dictionary Generation Tool. Each set

of functional modules supports either the action or data

entites of one of the four representations supported by the

dictionary.

The modification operation can take three different

forms: addition of new information to the entity definition,

deletion of a portion of the information for an entity

definition, and the changing of information in the

definition from one value to another. For example, the tool

user might wish to add to the definition of an action entity

the name of another action entity which the action entity

defined calls or uses. A long the same line the user might

want to delete information about a file which an action

entity uses. The user may wish to change the minimum value

which a parameter defined in the dictionary can assume.

As in the other categories of modules discussed, the

modification modules for a particular entity typ,, and

representation are managed or controlled by a module which

calls the appropriate functi nal module. In the case of the

Modify Entity Definition modules, these control modules will

present the user with a menu selection of the components of

178

0

the entity definition. The user will select the information

component that he wishes to modify. Once the user's

selection is obtained the control module will call the

appropriate functional module which will perform the

modification operation on the particular database relation

which maintain the portion of the entity definition which

the user desires to modify.

The exact nature of the algorithm will depend upon the

particular information element the user wishes to modify and

how that p'articular portion of the entity definition is

represented in the database relations. The functional

modules will have to obtain additional information from the

tool user in order to ascertain exactly what type of

O modification the user wishes to perform (delete, add,

change)

The following algorithm is for the Mlodify PValue Set

Relation (1.4.6.4). This module allows the user to modify

ie, delete, add , or change, a value which a parameter can

assume in the definiton of a structure chart data cntityv

It is presented here because it provides an example of the

use of all three possible modification operations. The

values for the pro ject name and the entity nanme are passed

to this module [rom tie control module for modification of

structure chart parameter definitions.

1 79.

... .- ..

DISPLAY Henu of Nodification Operations
1. Add new value parameter can assume
2. Delete a value which the parameter can assume
3. Change the value

GET User Response

IF Response = 1 THEN
CALL Append To P Value Set Relation

IF Response = 2 THEN
PROIIPT User For The Value To Be Deleted
GET Value To Be Deleted
DELETE Tuple From Relation P Value Set
WHERE Project Attribute =Project Name AND
Name Attribute = Entity Name AND Value Attribute
= Value To Be Deleted

IF Response = 3
PROMPT User For Value To Be Changed
GET Value To Be Changed
PRONIPT User For New Value
GET New Value
REPLACE The Value Attribute In Relation
PValueSet New Value In The Tuple
IH'IERE Project Attribute = Project Name
AND Name Attribute = Entity Name AND
Value Attribute = Value To Be Changed

This concludes the discussion of the algorithms which

are used in the Modify Entity Definition Functional modules.

The next category of algorithms to be discussed are those

associated with the List Entity Names Functional Nodules.

List Entity Names Algorithms

The List Entity Names functional modules present to the

tool users a list of all entity names associated with a

particular project within a specific entity type and

software representatLion. For exanple, these functional

modules allow the uer to view all the structure chart

parameter definitions associated with a particular project

designation. There are eight different functional modules

180

[." '.

which perform the list entity names function for either a

data or action entity associated with one of the four

software representation supported by the data dictionary.

In the Print Defintion section, the use of main

relations to retrieve all entity names for the print

functions was discussed. The main relations for each of the

data and entity definitions for each of tile four software

representations were displayed in figure 68. The list

operations use these same main relations to obtain the name

of all entities which are defined for a particular entity

type, software representation, and project designation. The

only basic difference between the algorithm for obtaining

entity names in the Print Definition section and here is

that instead of writing the names to a file, as was done in

the Print Definition section ,the entity names are written

directly to the terminal screen.

The following is the algorithm for List Names For

SC Parameters (1.5.6). Uhich will print to the terminal

screen the names of all parameter defined under a specific

project name.
0

PRO1iPT User For Project Name
GET Project :;anie
RETRIEVE From Pelation Parameter The Name Attribute For
All Tuples W.NIIiR The Project Attribute = Project Name
WRITE T W TEI" I 1:I, Name Attribute

' This conc tdes the discussion of the I ist Entity Names

Functional modules and their associated alvorithins. This

also concludes the discussion of Lhe basic a horithms used "

' " 181

,..*4

AD-R152 215 AN AUTOMATED/INTERACTIVE SOFTWARE ENGINEERING TOOL TO 3/'4
GENERATE DATA DICTIONARIES(U) AIR FORCE INST OF TECH
WRIGHT-PRTTERSON RFB OH SCHOOL OF ENGI.. C W THOMAS

UNCLASSIFIED DEC 82 RFIT/GCS/ENG/84D-29 F/6 9/2 M

Ellllllllllll
lllllllllllhl
llllllhmlllll
Ellllllllllllu
lllllllllllhlu
I~EllllllhllIu

, -.

11114-1. 1112-0*

II II1 A--2
IIIJIL25

MICROCOPY RESOLUTION TEST CHART

NATIONAL RIRFALH nF sTANDAR('s Jq6 A

by the functional modules which miake up the Data Dictionary

Generation Tool.

182

V. I jIe n e n _% i n""

Introduction . .

The iunplementation stage of the software life cycle

involves the conversion of the detailed design specification

into an appropriate programming language. The specific

objectives of the implementation stage for the Data

Dictionary Generation Tool is to fully code and test the

functional modules developed during the preliminary and

detailed design stages.0
In the following sections, the selection of the

database management system (DMiIS) to support the dictionary

database will be discussed. An appropriate programming

language for coding the functional modules of the Data

Dictionary Generation Tool will also be selected and

discussed. The implementation of the dictionary database

design and the implementation of the Data Dictionary

Generation Tool's functional modules will be presented.

This chapter will conclude with a discussion of the use of

the DBMS to perform dictionary maintenance and

administrative functions and a discussion of the testing of

the Data Dictionary Generation Tool.

Selection of Database Nanagement System

The operation of the Data Dictionary Generation 'Fool is

S.dependent upon the existence of a database nanageuient system

183

" " .

(DBMS) to maintain the dictionary relations designed and

discussed in the Data Dictionary Database section. The DBNS

selected must also provide support to the Tool's application

software in interacting with the dictionary database

relations to delete, modifyv, input, and retrieve data

dictionary information.

During the initial development of this project, the

target environment for the tool was as a component tool for

tile Software Development Workbench (SDW) which resides on

the VAX 11/780 computer utilizing tile VIIS operating system.

This system is primarily used to support research and upper

level graduate courses. As tile initial development

continued, it was realized that the Data Dictionary

Generation Tool could be developed as an independent tool to

support graduate classes in Software Engineering and Real

Time Programming Laboratories. For this reason, the tool

was initially developed on the VAX 11/780 computer utilizing

the U14IX operating system. This system supports the

majority of the graduate students and graduate courses at

the Air Force Institute of Technology. When this project

began, the VAX/VHS supported a network database system known

as TOTAL. llowever, the acquistion of an ING(;IES Relational

Database system was planned and subsequently completed for

tile VAX/V.S system. The VAX/UNIX system already supported

an INGRES DBHS. Therefore, the implementation plan for the

Data Dictionary Generation Tool was to develope the tool as

184

..... . .

an independent tool on the VAX/UNIX system and eventually

transfer the tool to the VAX/VIiS system where it would be a

component part of the Software Development Uorkbench (SDUW).

Because the lfICRLS DBIMS existed oil the VAY/UNIX system

and was in the process of being acquired for the VAX/VIMS

syster, the INGRES Relational DBMS was selected to support

the Data Dictionary Generation Tool. In order to maintain

compatability between the two versions of the tool residing

on both the VAX/VMS and VAX/UMNIX systems, it was essential

that the same DBNS be used by both versions of the Data

Dictionary Generation Tool.

Although the selection of IUIGRES as the DBHiS for the

tool was driven mainly by the need to maintain compatabilty

between the two versions of the tool on both target system,

INGRES is an excellent DBIS which fulfilled all the tool's

requirements for DMIS support.

INGRES is a relational database mangement system which

meets all the requirements as a DBMIS for the dictionary tool.

"INGRES is designed for both powerful functions and ease of

use. As such, .iGZES offers users a range of useful commands

in QUEL (QUEry Language), the system's data manipulation

language. A database is a shared resource contal ning

* information about some subject. As a data source accessed

by many users, a database must be managed so that the .

different users' needs are met.. The database must aiso be

managed so that the computer system is used efficiently as

18 5

possible. Balancing these two management tasks is the job

of a DBMS, and IIIGRS is designed to handle the two tasks

without compromising the utility of the data " (24:1-1).

The Data Dicitonary Generation Tool has three general

requirements which the INGRES DBIS must support:

1. Maintain the Dictionary Database Relations.

2. Support the interaction of application software

the database relations in the retrieval, input,

deletion, and modification of data dictionary

information.

3. Provide a capability for performing dictionary

maintenance and administrative functions (I.E create

new relations, modify format of relation, etc.).

The INGRES DBIIS is a relational DIMS. As such, it is

able to support the dictionary relations designed in Data

Dictionary Database section in the format required by the

Data Dictionary Generation Tool. I h'GRES also possesses

facilities which support the designation of relation

attributes to serve as primary keys for the subject

relation. The actual maintenance of relations in an INGRES

DBMS will be discussed more in the Dictionary Implementation

section when thc inp Iementat toi of the dictionary database

is discussed.

INGNES, through QUEL (quey language), provides a means

by which the information contained in the database relations

106

can be accessed by an INGRES user. 'File QUEL commands allow

information to be added to relations and retrieved from

relations. QUEL also provides a means of modification of

attribute values within particular tuples in a relation and

for the deletion of tuples from a relation. The application

software of the Data Dictionary Generation Tool allows the

user to view information in the format of an entity

definition rather than as a series of related but separate

database relations. In order to interact with the database

relations, the application software utilizes EQUEL (Embedded

Query Language) commands which the I-',GRiS DBiiS supports.

"EQUEL (Lmbedded (QUEL) is an embedding of the IIIGRES

query language into a procedural programming language (25:1-

1)". EQUEL is provided as the programming language

ti
interface to INGRES because it offers significant advantages

for the programmers. It is nearly identical to QUEL, the

INGRES query language. Equel allows the programmer to

utilize the control constructs of a programming language for

looping and condition checking while interacting with

database. "EQUEL is essentially the same in all languages,

statements used in different languages are interchangeable

(25:1-2)". The use of EQUEL statements in the application

software of the Data Dictionary Generation Tool will be

f ui ther discussed in Data D)ictionary Generation Tool

Implementation section when the actual coding of the Data

Dictionary Generation Tool's functional modules are

137

, . .-

.'.*. **.*..*.. *'*',*.'e:'4:.

discussed.

The INGRES DBIS provides facilities which can be used

to perform the maintenance and administrative functions

required to support the dictionary database. Those

functions allow the creation and deletion of relations in

the database. I1GRES also provides facilities for database

security and the selection of the most appropriate storage

structures for database relations. The dictionary

maintenance and administrative functions will be discussed

further in the Dictionary Database Implementation section

and the Use of DIS To Perform Dictionary 'taintenance and

Administrative Functions section.

Choice Of Implementation Language

The programming language selected for the Data

Dictionary Generation Tool riust be compatable with LQULL,

the embedded query language supported by I(NGRLS. Th e

language selected must also be available on tile two target

machines, VAX/VIIS and VAX/UNIX. In order to support

communication between the user and the tool, the language

must provide input and output facilities for data as well as

other information handling facilities. The languag.e must

also have facilities for conditional branchin-1 and Support

modular design.

As in the selection of the support I)D5IS, copatability

between the two target systems is the r eason for the

!-. 1 883.

I

:_.-_ X ;c_-;-y-?j.:2<Y..-- .?:? -. .:L ?.. ' - -. _....- b z: -... :~ . +:: P.::° . . .i ., :i i:- -7 i: :

particular language selected for the implementation of the

Data Dictionary Generation Tool. The VA/UNIX system

supports the embedding of EOUEL statements in only the C

programming language. The VAX/VHS system supports the

embedding of EQUEL statements in several programming

languages: Pascal, Fortran, C, Cobol, and Basic(25:l-2).

In order to maintain compatability between the version of

the tool on both the VAX/UNIX and VAX/VIS systems, the C

programming language was selected as the implementation

language for the Data Dictionary Generation Tool.

Al thouh compatability was the main reason for the

selection of the C language, it does adeqdately meet all the

requirements of the tool for an implementation language.

"C is a general purpose programming language whichi M
features economy of expression, Modern control flQws and

data structures, and a rich set of operators" (27:5). " C

was originally designed for and imp]cmented on the UIX"

operating system on the DEC PDP-Il, by i)enn is Ri tchie C

is not tied to any particular hardware or system, however,

and it is easy to write programs that wi 11 run without

change on any machine that supports C" (27:5). The C

languap, e does have some disadvantages over other lan, uages

such as Pascal and 1'ortran . C itself provides no input or

output facilities and no wired in file access method,;. All

of these higher level mechianis is are provided by expi icitly

called functions. These functions, however, are provided

. o..

II

by a standard C I/O library which is supported on all

machines which support C. !his standard library allows C

programs which require input, output, and other system

functions to be moved from one system to another essentially

without change (27:4). The actual use of the C language in
*I

coding the functional modules of the Data Dictionary

Generation Tool are discussed further in the Implementation

of The Tool's Functional Hodules section when tile actual

implementation of the application software for the Data

Dictionary Generation Tool. is discussed.

S!
Impl__ementation of Dictionary Database

The implementation of the dictionary database involves

the installation of the database relations discussed in the

Data Dictionary Database section in the IiAGRLS DBINS. The

initial step in installing the dictionary database is to

create an INGIES database to support the data dictionary.

This is accomplished be the execution of the INGRES createdb

command. The createdb command creates a new database under

the INGRES DBIiS (26:1). The name given to the database

which supports the Data Dictionary Generation Tool is

swtools. Therefore the foll owing, command creates the

database:

$ createdb swtools ($ operating system prompt)

The database is initially created without containing an y

* relations or data. The next step is to create within the

1 90.

p

. S . & .S . t A * S A . %. , U . .~l

swtools database the individual relations which will

maintain the data dictionary information.

The relation or table is the basic storage unit in

INGRES (24:6-1). It is easy to create relations, as long as

the following three pieces of information are known:

attributes or columns of the relation, the type of data that

will be placed under each attribute, and the amount of space

or the allowable size of each attribute.

INGRES supports three types of data: character string

integer, and floatinq point (24:6-2). The character string

data type is appropriate for non-numeric data such as names,

dates, addresses,etc. The integer data type is appropriate

for numeric data that have no decimal points, integers. The

floating point data type is appropriate for numeric data

with decimal points, real numbers.

In addition to the data type of each attribute, the

size of each attribute must be designated when a relation is

installed into an INGRES supported database. Size and data

types are designated by the use of a character immmediately

f ,llowed by a num1)er. Character,; arc desi-gnated by the

character c . A nu, eric value followi i-, this letter

designa'tes the size of a charcter type attribute. For

e:.arple, c12 indicat es an, attribute which contains characters

whose maximum size is 12 characters.

For integers, the num)er foIl owing the letter i

(designation for the integer data type) indicates the byte

191 "'

size supported by the relati(.n. The byte size detcrmines

the range of numbers which cin be stored under the subject

attribute. For example, tile designation il indicates a byte

size of one which allows the attribute to accomodate any

integer number greater than -128 and less than +128. The

range for an i2 designation (2 byte size) would be any

integer number betwcen -32,768 and +32,768.

"Floating point numbers can be specified as either

single precision (4 bytes) or double precision (8 bytes).

Both types designations support a range of from -10 38 to

+10 "' 38 ('-" indicates exponentiation). The precision

choosen effects how many decimal places are retained in the

number"(24:6-2). "Sin!le ,precision (f4) supports seven

to- decimal digit precision and double precision (fH) supports

17 decimal digit precision" (24:6-3).

The actual implementation of a relation in an I IG;RE:S

supported database is done by the execution of the create

command. The create command creates tab)e,; or relations ini

a database. In order to use the create coi:imand the subject

database must be accessed from the I GiG,[-; iJB;iS . 'fbi s is

accompl i sh b v enter in g th ie following c o:iman d f ron the

operating systemi:

$ in,,'res swtool a,'$ operating,, system promlpt)

'Iis co:imand ; a] lows the swtoois database to byN accessed

throt,1h the I [, 1)12 S

12

.. 7: i- :- -- .; -'-.- : . n- -'- -"--- ''- '. --. --- - -..'- ,.-. -;_--. . _. " -" .- -. .; *.. . - -. ... "-i _, - . . i.i - *. .L . - -- _-.

The syntax for thle l:IGRE': create conman(1 is as follows.

*create relation namie(domaiin nam]e 1 =torma t d (omain name
2=format)

(* LG RES DBIIS prompt)

Relation name is the name of' the relation being created.

Domain name is thle nanic of the individual relations wi chl

mae upC 11 th1e relation beingi c reat e d. F or ua t i s th e

designation whlich Ilid icatcs thle d at a type a nd size

associated with each attribute. For example, the following

command:

create activity(project~c12, name=c25, nur.1ber=c115)
(*INGRILS Dl3US prompt)

would create thle activity relation described in the Data

Dictionary Database section. Fig-ure 69 presents a visual

display of the relation created.

Activity Relation

project Name Number
12 characters m,.ax 25 character max 15 characters max

Figure 69. Create Relation Example

T 'he INCGRES create comlmandl is used to implemenlt a]ll thle

dictionary relations dlescribed and discusseol in the D ata

Dictionary 1) 1t ahi " S0ss cLi ou1. hel ,r e air e lire othor

) pr oc 0(1Lu re CWh11i Ch a rec app)1)lied(t o n e wly c rea t ed r eIa t i ons:

dle si na t io o i 0f S t-or1age , St LAIC t Lirec a nd 1) p i m:a r y I e- 0 s C L t i. n g

p er mis ins Onl rel a t ions, ri d d C!; i ,Ialt i 11 andl t ime](

imiit a t ion on ai rie-tion0 s CI:.isLncc (iL ti e datai 5as c. Sn ce

19 3

these procedures are useful at times other than the

j implementation of new relation, they will be discussed in

the section on the Use of tile DBIIS To Perform Dictionary

1laintenance and Adinstration Functions.

Implementation of Data Dictionary Generation Tool's

Functional ilodules

Thie actual implementation of tile application softw..are

associated with the Data Dictionary Generation Tool consists

of the generation of C language code v.hich contains embedded

E(UEL statements. The C program statements perform the

necessary communications tasks between the user and the tool

while the embedded }DUEL statements handle the necessary

interactions with the dictionary database. The program

consisting of EQUEL statements embedded in C programming

language statements is processed through the LQUEL/C

preprocessor. ".Statcments beginning with two number signs

are recognized by the lQUEL/C preprocessor. All other

statements must be standard C or statements acceptable to

another preprocessor The EQUEL ,:xte;.sion allow table

names, column names, target-list elements, domain values and

qualifier clauscs to be contained in C variables" (2.5:1-1).

Each line in the source code which contains an EQUEL

statement must be!,in w.i h two number si,,ns (, J) in the first

column. In order to t rans fer in f orma Lion between the

dictionary database and the tool user, it is necessary for C

. - 1 9/4

- "......~...

language variables to be referenced to the relation names,

and attributes names. In order for this to occur, the _

subject C variables must 1e made knowii to the EQUEL/C

preprocessor. This is accomplished by beginning tile line on

which the C variables are declared with the :.i/ signal.

In order for the application software to interact with

the swtools database, which contains the data dictionary

information, it must initiate access with the database.

This is accomplished by includin- the followinn statement in

the source code: .7 t'ingres swtools. In order to end

database access from the application software, the following

statement must be included in the source code: 9,'exit.

In the following sections, examples of the C code with

embedded EOUEL statements which perform the four major

functions of the tool (input defintion, retrieve

definition, modify defintion, and delete definition) will be

presented and discussed.

In__Ut Definition.

The algorithm for inputting an entity defintion was

discussed in the Detailed Design chapter. The functional

Modules that perform this task prompt the tool user for

data dictionary i nfori.iation and append this in format ion to

the proper rela tion in the di cti onary datalbase. These

IIodu 1 S util i; cal I1I t o Lho stan(dar(I C I/0 1i 1 1rrv to

accompli sh the intiut and output of inforiation bctween the

tool and the user. The standard C library function "printf"

195

7....

is used to display formatted nutput to the terminal screen.

Sd The standard C library f.uncition "fgets" is used to obtain

user input. The EIQUEL comiand "append" is used to add a

tuple to the appropriate rel ation in the database. The

following is an example of the source code required to input

the information for an entity definition. This example only

demonstrates the addition of infornati on to a sin-'le

relation. However the san:ie basic source code is used in all

functional modules involved in the input of an entity

definition. The text displayed bet wecn two " synbols

represents an explanation or comment and is not part of the

actual source code.

Inputactivity(proj,actname)
m nodule name and input variables proj(project name) and

t -actname (entity name)
#h'char proj[15], actname[271;
'* C declaration of input variables, ,! indicates that

variables are known to the EQUEL/C preprocessor and that
variables can be used in EQUEL statements'

Begin symool in C"

#char actno[151; - Declaration of a local variable in
module which is known to LQUEL/C preprocessor-,

printf("±nEnter activity number.+n"); *User Prompt -

fgets(actno,14,stdin); Input of user response into C
variable ac tno:

i/happend to activity(project=proj,nane=actnamc,numnber=actno)
* LQUEL Statement wh i ch add in format ion to a data base

re la t i o n
* lnd synbol in C

The EQUEL. append commiand adds a tuple to the activity

relation. It al:;o obtains valu es for the attributes in the

tuple (project , name, nur.mber) from the rcfere1ced C

196

- o ., . o . . .o o . o o , .. .

variables(proj, actname, actno).

Retrieve Definition

The definition retfieval algorithm is presented in the

Detailed Design Chapter. The modules which perform the

retrieval function use the tool user' s imput as a key or

guide in searching the database for the requested

information. This guide or search information forms the

qualifier for an EQUEL retrieve statement which finds and

retrieves information from the database. The following is

a sample of source code required to retrieve information

from a single relation in the database

getactivity(proj ,actname)
##Vchar proj[15], actname[27];

1char actno[15;
i#range of e is activity
- Establishes the relation of interest, allcws variable e to

represent the activity relation in the retrieve statement'
##retrieve(actno=c.number) ":Tetrieves the value of the

number attribute and sets the C variable actno equal to
this attribute value*

h#where e.project=proj and e.namc=actname
• Qualifier for the retrieve statement

printf("+nACTi'IVITY- fI U R1, , 1,: n' ,actno)

The E QU L range statement allows the e variable to

represent the activity relation. The retrieve statement

obtains tile value of the number attribute from the database

relation and places the value in the C variable actno. The

where statement is the qualifier for the retrieve statement.

It identifies the proPer tuple of tile relation from which

the retrieve statmLent is to retrieve the required

197

.. .*. . . . *. *

attribute. In example, the desired tuple is the one where

the project attribute is equel to the value in the C

variable proj and the namc attribute is equal to the value

in the C variable actnarle. TIhe and i'. symbols provide

a useful convention. This statemcnt causes the C code in

between the two symbols to be executed once for each tuple

retrieved. For example, if two tuples in the activity

relation qualified for the retrieval(two tunles which both

had the saine project and name attribute values) the C printf

function would displny number attributc valuc associated

with both tuples.

Delete Definition

The alorithm for the DcleLe LntitV Definition

to functional modu l e s is presented in the Detailed Design

Capter These modules, based upon user input, delete data

dictionary information from relations in the database. Like

the EQUEL retrieve stat ment, the delete statement use a

where statement as a qualifier for selcctin;,, the proper

tuple(s) to be deleted from a relation. The range statement

is also used to set a variable to represent theL relation of

interest. The following is an example of the code used to

delete inforration from a sin 'l relation in the database.

deleteactivity(proj,,actname)
i'cha r pr o j[151 a c t iaf21

it i ra ng e of c i s a c 1: iv i Ly
;hidclcte e where e.project=proj and e.namc=actname

19-

This code will delete every tuple in the activity

relation where the project attribute and the name attribute

are equal to the value for the C variable proj and actname

respectively.

Hodify Definition

The algorithm for the functional nodulules which modify

an entity definition are presented in the Detailed Design

Chapter. The EQUEL replace statement is used to change the

value of an attribute in a particular tuple of a

relation. This statement uses the range statement to set a

variable to the relation of interest and a where statement

to identify the proper tuple in the relations for

modification. The following is an example of source code

(0 used to change a value of an information element which makes

up an entity defintion.

modifyactivity(proj,actname)
#,'char proj[151,actname[2 7];

#'char actno[15];
I)rintf("±nEnter new number for activity.-n");
fgets(actno,15,stdin);
v,'irange of e is activity

I#replace e(number=actno)where e.project = proj and e.name
actname

The EQUEL replace statement places the new value for

the number attribute in the relation tuple where the project

and name attribute.- are equal to the correspondin,- values

for the proj and actname C variables.

199

• . : .-. :1i-; '. - :- - :."'-'1.: ':. .1":'.1" ::.",: :Z'--::.--...:-.' '".:.' .:'-'-< - "". - . ' -:-:.-:-1.-•.-. .-._. _ -_.-_, _. ". , . ',."-._."1_

Use of The DMIS to iPerfor i Dictionary iaintenance and

Administrative Functions

The INGRES DB7IS system provides facilities which can be

used to perform the maintenance and administrative function

for the Data Dictionary Generation Tool. These functions

consist of the creation of new database relations, the

identification of storage structures and primary attribute

keys for database relations, tile deletion of relation from

the database, setting of access permi sssions for relations,

and setting time limitation on the existence of relations in

the database.

The creation of database relation was discussed in the

Dictionary Database Implementation section. The other

i 5 dictionary maintenance functions will he discussed in the

following sections.

SelectinU, Storaze Structure and ldentifying Primary

Keys For the Dictionary Database Relations

When a rclat ion is created in an I.TWi-S supported

database, it is automatically stored as a heap. A hea)

stora(.e structure has two nain characteristics: nothing is

known about the location of the tuples in the relation and

• duplicate row s are not removed from the relation. eMew

tuples are added at the bot ton of the re [at ion regaardless of

what attribute values are contained. In order for INGfLES to

perform a query on a heap storage structure it must scan the

200

entire relation to be sure of retrieving the correct data

(24:17-1).

INGRES supports two other storage structures (other

than heap) that locate tuples without having to scan the

entire relation. These two structures, hash and ISAII can

greatly accelerate queries run on relations which contain a

large number of rows (24:17-3).

The hash storage structure stores each tuple in a

relation at an address determined by the value of a attribute

or combination of attributes contained in the tuple. These

attributes form the key for the relation, These keys allow

the access to a specific tuple in a relation to be speeded

up. The hash structure is especially useful in queries

(O which involve the exact matching of key attribute values

(24:17-4).

The ISAN storage structure is useful for retrieval

based upon a range of values. ISAMi is a structure that

supports retrieval based upon both an exact match and and

ranges of values. "ISA 1 stands for indexed sequential

access method (23:-17-4)

As stated earlier, a newly created relation is always

stored as a heap. The INIGRI"S modifv command is used to

change the st ora:,o structure asS ociated wi t 1 a particular

relation. The followin2 ex'amples demonstrate the use of the

modidfy coinrand to change a heap structure to hoth a hash

and ISAI stora,,e structure.

201

, -.-

The command modify enploye, to hash on name would change

the storage structure of relat ion employee to hash and cause

the attribute name to be used as a key to the relation. In

a similar fashion, the command modify employee to isam on

salary would cause the storage structure of relation

employee to be converted to ISAN and the salary attribute to

be used as a key for tie relation.

Setting Time Limitations on tile Existence of Relations

in the Database

The QUEL command save is used to preserve a given

relation in the database until a given expiration date.

Only tie owner of the relation (tile person who created the

a relation can save a relation (28:2-30). For example, the

following command will save relation activity until February

28, 1987:

save activity until feb 28 1987.

Deletion of iRelations. From The Database

The QUEL destroy command is used to remove a relation

from the database. Only the owner of a relation (tile person

who created the relation can de-troy it). lhii:.; corlmand is

very di fferent f rom the delete c o mmn nd used i n tile

application software for the tool. lhe deletc coii!:land only

removes information fron a relation. 'Che destroy command .-

totally removes the relation frori the databas e. If the

• .'.-.'.-'..-', -..-.-....-.. v.. ,."-..."..'....-..-..-.......i..-..-...--.-..--............-......-.......-..-..,..-....-..'.......,...,"..."."

relation activity w-,as removedi remioved f rom the database b

mc an s of thle d es troy comand , a n at temrpt t o rc tr-iceve [Ioni or

a ppend t o thle a ct iv it V r eli ion .,ou]I d ca iise t le)!i IS Ito0

issue an error messa-e. Tile f0 ol."isanl ex Cp. of thle

destroy commiand bein,- used to remove a1 relation nameod

dlepartment: dest ro Y decpa r tie iit

Obtaining Information About 'Ihe Structure Of a Database

Relation

The Q) U EL hielp command is used to obtain jnfor;-iation

about the structure of any relation in the database. By

entering the command: help relation noame, a list of the all

the attribute fields which are contained in a relation, thle

j ~ storage structure supporting thle relation, and thle Ley

attributes of a relation canl be found. The hiel p coi-iimand

also provides useagle iniformati on by d iplay in;, the number of

tuples currently stored in a relation. [b hef 1 1"I comm.)F.and (

also d i s pl1a ys the type of information c onIta i nle d inI each1

attribute in a relation and tile allowable siz~e of a valune

under that attribute.

Trest inlg the(fun Djon 01a Ioue r1 II SOf theC Datl 1 hi CL ona ry

g;eneration Too L w as grea t I y enhanc ed by) t he use o 0f thle

I NGRLS DDIS . S ince the EDQULL commiands e mb)e d ded in th le

203

source code are identical to the QULL c omm a n ds us ed(i n

IN G R ES, the r e su It of 1ECUIJ statements could be tested

without having to actually run the auplication progjraml.

E'ach functional module of the Data Dictionary Generation

T ool was desui 1-ne(I to interact with onl1y 01110 individual

database relation. This modular desi.5;n m~ade it miuch easier

to trace errors vwhich occurred during, the testing of the

The imiplemientation test inc,, of tile 9;a1t, Dictionary

Generation Tfool was conducted in f'our phases. During phase

o ne, thle INGRES DULL commands were used] to test the I U 1L1

s ta t eme n ts embedded in the source code. This: ensured that

the interactions with the database would obtaini the desired

result duringi the execution ol thle dictionary operations.

TheI ncx t p)h a se w as the testing, of t he inrd ivi dual

f unc t ionalI modules. S in Ce ea ch1 functional n o dule w as

r e snonS i ble f or bo0th obtaining- the necessary inf ormation

from the user and using this information to perform a

speci fic operation onl 'In ind ividual data base re tati onl, these

modules formed a nat ural bui 1(1in:, block. for- the system.

IPhla se thiree of irniererie ta t ion test i n'- involved the1

t est i n,. o f t he(f un c t i o fia I and u~anl, ricir i :I Ioo u I ,s i iv() I ,e d inI

per formingi i operatLi onl.; oil t he ba s ic in)f ormiatLioniaI unli t of thle

d i ct iona-iry vthle c Ll i v de(,f in itLion.

Phas,;e f o ur cons ted o f p la c i "n I I f UnTICt io na anL-n (I

1 o~r l evelI rianag-er a]I riou les under thle execti ive m o(luIeCs

2 04

for the tool and testing the ,ysten as a w,,hole.

During each of thcsc phase, the (;i,'S DEi ::as used to

validate that the desir6d oprations on the database were

performed as a result of the execution to the functional

modules of the Tool.

2i

-- . -- - ---- " .. " - . . ' "- • " . .. 2 ., .," -.i.., - _

V1 Conclusions And ,ecoiimndations

d ,,_e~_LLc a!3m ~atio*

The purpose of this thesis investigation was to desig, n

and implement an automated interactive software enp ineering,

tool which would ,enerate data dictionaries from the

information containcd in softwarc representations such as

SADTs, Data Flou Dioa ramis, Structure Charts, arnd Code. i'his

tool was to provi de its users with an interactive (Iata

dictionary to support the developcit of software throu ht

all phases of t'ic software life cylce.

I!1sin S ui im a ry

The software life cycle approach was util :ed in

developing the Data Dictionary Generation Tool. The tool's

requirement's definition phase was directed toward

identi fy i n the ,oals and objectives of the system. A list

of objectives and concerns for the tool was developed and

discussed. A model describing and def ining systcr

requirements was also developed.

The preliminary desi-n phase of development ilentifiet

0 four software representations which would be supportedf in

the initial vers;ion oI t ie D)ata Diictionary Generation Tool:

SADL's, structure chairts, data flow diara fs, and code. The

information requi red to f oruiulate the data dictionaries for

206

-. ":-""."- .-. .. 'i,<.:- - d .- -:. i- *'t : . " l- . -'. -,.2 ' -- J: ':2 ' -) l :. .'- -< .L - ii:"-- - :-

ea ch1 of t hes cieprcscntati ons Was identified arid theI

database to maintain Liii s i nformiation was designed. T1he

structural f ram~ework of Lite appl icat ion sof tware req~uired to

p~erform the basic dictionary operations (addition of

information, deletion ot information, information

modif ication , etc) was developed .

Dur in P the (ictailed design phase of developn-t a

functional algorithm-. Was formulated to sup port each

functional and managerial nodule identified in the

structural modIel developed durin, Lte p r eIim,,i na ry de s ion

pha se.

The implementation phase consisted of the select ion of

both a DBNS, ~~s to support the dictionary database and

animplem-,entation la n ,u ae , C, to code, t he application

software. The database to suitp po rt th1e f our -software

representation Wa1S -impl1emenitecd and a po r t ion o f thet

application software was coded and tested.

1iplenentation/ iestir, iesults

* The Data DictLioniry (Generation Tool was utilized by the

6K 690, I'eaJ 'finc iro,,rammin , Laboratory, class to g;enerate

datLa dli ctLi o nIr ie! in :i;tl phor t o f Lte CIa Ss pr Iojcct .

A App)rox i:mt eIvy L/ studenits,- it ti I i d(L t e to oI '11 1)~ pr ov id e(I

Ifedba ck on t he tool]' ner f or-nance . jine 1-i 09 U p)r o jec t

S Up por t ed by tine tool u Li i edi oniv y te portion of Lte tool

w* c 11cF.su pp or tecd i ie s~t ructure chart a nd(c o(Ie s oftLwar e

207

representation. The app lic'tionl software for the Data

Dictionary Generation Tool was improved greatly as a result

of feedback from the students who used the tool for this

project as shown in the following paragraph.

During the initial of use of the tool, several errors

were detected in the execution of the application software.

These errors, for the most part, were due to the failure of

the system to sufficiently check user inputs for errors.

Another problem encounter was system responsiveness. The

user would sometimes experience delays while waiting for

system prompts to signal the user to enter information into

the dictionary database. As a result of the user's initial

eperience with the tool, it was realized that the user

* *required a small amount of hands on experience with the tool

before they were comfortable with its operation.

As a result of feedback obtained, the application

software for the tool was modified to in nclude additonal

error checking routines to verify user inputs. The 'fool was

being supported by the VA; 11/7 0 computer utilizing the "

UNIX operating system. This system was experiencing an

extremely heavy workload during time of the tool's initial

use. The tool was checled durin, t Limes of normal useae on

the VAX/UlIX system and its response time was found to be

adequate for inter'ictive u;e, iowever, durin2 peak workload

periods for the system, the tool's response time twas slow.

'fhe response time probi em was due to the workload on the

2 W.) " '-:

o ~ - --" .' ° .. -° " ° i° '. • . " ' .,:' - , . % - .° . . , . - .- - % . -. .. - -. - '° .° . % . . -'-" -" ." .'2-. . , -

host system and was not due to problems in the Data

Dictionary Generation Tool.

With the inclusion of error checking; procedures in the

application software and an, increased level of user

experience with the tool, the problems experienced by the

11690 class in using the tool were greatly reduced and the

support provided by the tool was improved.

Recommendation For Further Development

This effort resulted in the tool only being implemented

on the VAX/UIIIX system. The tool should be rehostcd on the

VAX/ViIS system and be integrated unto the Software

Development Work Bench (SDW).

This tool constitutes anl excellent first step towards

the development of a tool which will autonatically generate

data dictionaries from the actual graphical representations

or diagrams used in tile SAIT, Structure Chart, and Data Flow;

Diagram methods of software representation. The interfacing

of this tool with the graphical tools supported hosted on

the Software Development Uorkbench would constitute an

excellent start in this development effort.

.)uring the de:ign of the database for the tool, several

areas of commonality aron,, the rel at ions supportint tile

various represcntat ions was pointed out. hlowver, this

commonality was not taken advantage of in eit her the design

209

.7...................-. . . .

of the database nor the de-clopment of the application

software. InvcSti.,-atijon into these areas could lead to

improvement in the tool's speed of operation and reduction

in the memory space required to support the tool's

operation.

Appendix A: ,equiroentL's ilodel Data Dictionary
Generat'-on 'fool

The Data l)ict ionary Generation Too] is a software

en inc ring tool which generates) provides data dictionary

surport for various methods of software representation such

as structure charts, data flow diagrans, etc. In order to

develope this tool, a thorough understanding of the goals

and objectives of the tool must be formulated. This model,

utilizino the data flow diagram method of representation,

provides a means of defining and describing the requirements

for this tool. The upper level of the model is presented

and explained in chapter two, Requirement's Definition.

Requirement's Nodel Data Dictionary Generation Tool

Figure Title -

1-1 Top Level Data Dictionary Generation Tool
1-2 Obtain and Use Data Dictionary Inlormation
1-3 Generate Dictionary Inputs From Soft,are

, epresen tat ions
1-4 Analyze Software Representation

1-5 Obtain Additional Dictionary Information From
User

1-6 Perform Dictionary Functions
1 1-7 Interact Uith Dictionary Schema
1-8 aintain Dictionary Schema
1-9 Interact Uith Dictionary Database

1-10 1lanipulate Dictionary
1-11 Add Ncw Entity To Dictionary
1-12 Add N ew ~elationship To Dict ionary
1-13 ;odify !xistin, 1.ntity
1-14 M1odify E:xisting Relationship
1-15 Perforu Query Operations Oin Dicti.onary
1-16 Per forn Query Procedures
1-17 I)erfor:.i Query
1-18 Perform General Query
1-19 Perform Entity And Attribute Query
1-20 Perform Alternate Namie And Context Query-

211

User Input .- User Message

/Obtnin

alld use
Data Dictionary
Information Da-

Software . 1 Data
Representations Dictionary

-I n fo rma t ion

Figure 1-1. Top Level Data Dictionary Generation Tool.

User Inputs User Inputs

User Jlessages User Messa-es

7Generate Perf orm
Dictionary Dictionary
Inputs From Dictionary Functions
Software Inputs 1.2
~epresentationc-

Software Dat a
Representations Dictionary

I n forciat i o n

Figure 1-2. Obtain and Use DLata Dictionary Information (1).

212

"
... '.

< -. '.- .'.<', . 2 --.-.-. .fi..< - . 2..--. .. .2' ,' . . .-.2- .'%".'f.- '2 1<i> .'< . . , > ,P > -,- - . -,<-< .i < .- i

User Input E,'rror isac

So f t%..ar e
Re pr esen tat ion

Analyzo

Software
Zepresenltatio Incomplete

1.1.1i Dictionary

User Prompts TO

Response 'VUser

To Promptsta

SDictionary

mf orl
ia io

n
From User
1.1.2

rntry

17 oFormat ted
D)ictitoinarar

Entr tr

11.1.

D' ictionary
n pUt S

Figur 1-3 GenrateDictionary Ipt rm Sfwr
Rcprcse atabse(.)

13

1 .1 .4
. .

Software Representation

e

Software
Representatio e- Software Representation User Input1..11

H r r or

ilessages

Check For
Errors In
Software

lepresentatiol

Software
Representation

Ex t r a c t

Dictionary

Information ~~-1 a L /yDslUsrApoa

Info r mati ioan
r o

Dictionary inar
Inorat o reis play- ' Usr nute ppoa

nformat ont
ToeUse Inor
1.1.1.4-Ana ydpresentatio n

•~~~ ~~ on • •., ''

I 1i c3) 1

ECrrectd'xrcedDcinr
ictoarnaDcioayynu

Exrare Disoray o
Dictionarynar

CorrectIo matioUne pu

Tse IsnpInorato
1.1.1.5--- Lfe Idcae

Figurei-4. onarye Softionaerysii Input11.

214 ,,'.

0 r.

",

.".". ."."."..-.-. .' ---."..-.-. .".- '."."."." - .-. - .-- ",- " -- i..-.*: .- - .',.. .) - - -. .) .t .- •.- -

Incomplete
Dictionary

-Input

D et er min e
Ad d itio n al.
In format ion
R eq ui red

1.1.2.1

Ieissing Information

Incomplete
1)ictionary
Input

*Prompt Prompt User
User For For Additional

Additional Inf ormat ion

Use- r 1.

-r

I n put A nd
Collect Addi tional1
Res p on se Information

A 01 .1 .2.2 Fr om Use r

User Supplied

Comibine
Mach in e

Extracted
0 ~Input U!ith

User Provided
Input

1 .1 .2.3

* \\ I) ic t i on r y

En t r y

Figure 1) Ot a in Ad d it ornial1 i ict. ion a r y Ifo r ma i on 1'r om

User (1 . 1.2).

215

"..* .".'... 'k :'v2'.':"...-.i "'-.... ."' .r'V ' '."?"1".' '." V ."":: ''' " """ ." ".'"i " "'l

User 1 r r or
Input i7 0S a e Cs

'Determine -

IDi ct o n ar v
Funct ion
.u.

F.u n c t i on
-~ Select ion

User Input 1)ic t io nar y
Adi minis trat or

/Schema Inputs

Inter act Peorformt

With i ct ion ar y
Dictionary Ad minis trat o

Schema Functions

1 .2.2 .2.4

Changes To
Sc hema

User
Input

Ii Ct i a r11

Content
In formra tion

Challes To
D)a t aba2

Figure 1-6. Perform Dicti onar y Funct ions (1.2) .

216

User Input

*ejermhi nc
Type OfSchema

nt eract
i on

, election

User Input User in)u t

laintain

1e p)ort
Dictionary n [)ictioriar

Schema Sc hemina
b1.2.2.2 1.2.2.3

Changes Dictionary

To Dictionary Schemna Schema Peport

Figure 1-7. Interact Uith Dictionary Schema (1.2.2)

User Input

Select
Schelemato 11aintenancel

Function

1.2.2.2.1

Selection

User Input User Input User Input

Abolish Alter Chane
Schena /Schema :eta
Item I Item ntity Nam
1.2.2.2. ! .2.2.2. .2.2.2.

Item Removed :;odification Nei; arIe
1 rom Schema of Sjc her'n, Itel Yo r lle In Entity

i~e': iceta

Re I a t ions h i p
Create plce et "c :

Schera Ito 'C.ew It em \elationshi p
.2.2.2.5 In Schema .2.2.2..

Figure 1-8. Maintain Dictionary Schema (1.2.2.2).

217

User Input '

F DetermineUser
Sect io

Selectio

SoIc i
User In ut /User Input

lanipulat Rotii
Dictionary R po
1 .2.3.2 1-. 1.2.3.3

Dictionary Report

Database
Manipulation

User Input User Input

erform Perforn
Query Entity

Operations List
On Operations
Dictionar '1 .2.3.5

.2.3.4

R espo n se ,i s t
TVo Qutie ry Of Entities

Figure 1-9. Interact Vith Dictionary Database (1.2.3)

2 1P'

User Input

)e te rm in i-
Type Of-
Dictionary

1 .2.3.2. 1

Selection

6 User Input -~-User Input

dd New~ -. dd New
Entity To Zelat lonship
Dictionary To'1 Dictionary
1.2.3.2.2 /1.2.3.2.3

ewDictionary N 0w
E n t ity) Dction ar v

// Relationshi 1)
40/

User Input User Input

Mod i fy Mod if y
Ex is t in- :x i St ingP

-n t i t y c Ila t ion!-,hi p
1 .2.3.2.4 1.2.3.2.5

Hod i f b ed 1lod i flied
FEn lt Y L ci 1a- nt i on s h1ip1

1igure 1-10. Inipulnte Dictionary (1.2.3.2).

User Input ew
Dictionarv

Entit

Identify Ai
New Entity
To Add ew Entty n . t

.2. 3.2.2.1 t tit ty To

Da t anship

Figure 1-11. Adtd 7e: EntitI To Dictionary (1.2.3.2.2).

User Input
A d d

;Z cI at i ons sli i i
dentif y A 0 V1 To Database

Necw Rclat~ionsliip (.. 3.2.3.3

n.2.2..2...1

To Add -. ,-

Identif y l-- Ieationshi x
TyPc orype !ZelIa t i on sli ip

C, - o r d(1 or
I i t i t i ('s

* In
Il I at Liosh

I t 2 3%

0 >cx DicL ionary

U r c fl d (I~e t I n) T IiL 01i

2 . 3'. 2 .

2 2 0

.0 °:

lUser Inp'At

id e n t
it

v

E _Ist i n~
1"n1t ItLy Fo r

Mod ificat jot
.2. 3.2.4.1I

11ser p1)t io n EnLi Lv List
Entity Name (Error Mlessage

dentify identifv

Entity ii)-" LisL ID

to An En ti L y
C1 .2 .3 .2.4 .'

11nt ity i splay

Desired MIodif ication /User Inp~ut Version Juinber New Niame

.iodify :Iodify Dcee
(A An En ti ty Entity And Entity Copy Entity

1.2.3.2.4.D Ad I~ 1..324.

.6.
* M1o d if ied I.*ev: VEnt itL v Cop1)i c d

En1t i t y Version PCeIetin Enllt ityv
o f Fr om .ith 'Now

oFiFgure 1-13. ;1o1d I y Existin~ t i L (1 .2.3.2.4).

22

User Input

Identify

Ex i s t in

F or hi
Nlod if i c at ioil

lRelationship ID

D Dis pIa y
Relationship
1.2.3.2.5.2

Rel1at ions hip
D) is p) la y

Relationship .7User
M od if icat ion Delete

*1 (oi f y 1) el0 e
Relationship Relationship
1.2.3.02.5.3 1.2.3.2.5.4)

Figure 1-14. 1 iod i fy iLx St in,- Ue 1at i oishi (1.*2 * 3.2.5).

2')2

Error Iessages User Input L:rror IMessages
j 7 Select

Type Of
Query Response Query Procedure

Operation R eS Ul1t
Oc' 1.2.3.4.

,Perform lOption Perform
uery.... Puery

1.2.3.4.12 1.2.3.4.3

Figure 1-15. Perforil Query Operations On Dictionary
(1.2.3.4).

User Input Error 'iessagC;

0-. Procedure eeCdtion

Text Documentation Procedure Niame l Error M;essages

_ ~
o '

- .

Saved/ur Deleted R;eu(, 2epot

Query ~ ~~Query QiyO ur

Procedure (rcure Procedure rcures

• ~~I ur e lcro ed re

1.23igu2re - 1.2.3.4.2.3.4. . '2.4 .2).3.4.2.

Tot '- N n E1/

Saved Duer ele te 0 ~ e u tedLit O
rOceIue(.tery Q uc ryoe r O Query

Prcdr P rocedIu re PI'dr Pr odres

1.2....2.3. ..

,- -.i- -.'l ?. - .:--~ . .. -'- - -- :,ii;iL -.4 ."- . .1 ..-- ..-2 "j.3 .'..2,.- 1'> J --.2- . .4 .2 .5. -jli> - -' .. - 2 .i

User Input, Error iiessa-es

/Identif y
Deasired(

12.3.4.1.

Selected Query

User Input l-- ro iessaes

erform Perform' P)erform
General Entity And Alternate
Query Attribute 1name And
1.2.3 .4.1.2 .2.3.4.1.3 1.2.3.4.1.4

General Query Display Of Display Of
*Responses Attributes Lntity Names

Figure 1-17. Perform Query (1 .2.3.4.1).

Query Naine User Pront Genera].
-~ Query

LEnt it y !Zes p 0 11 s e
Name \

Contents
Opt ion

S p0c ify Y espond
* General To C

Query General
lPara-ileters Query

0

Figure 1-1S. Pe r Ior v enevra I u er y (1.2 .3 .4 .12)

224

Entity flames Error riessa-es Display
I~ Of

Entity Types Attributes

Attribute Types,~

Spec ify Y RS e0 s ri (I
Entity And L n t ity To Entity

Query -AL.ttr ib-ute Attribute

.23413 Paraieters .2.3.4.Quc .)

Figure 1-19. Perform Entity And] Attribute Query
(1.2.3.4.1.3).

*0Entity Names Error MIessa-es Display
Of Enitity

Entity Types\ Nam.,es or -

Alternate
Alternate a /
Names

Specif-y //Respond
Alternate Alternative

* Name And i ame0 Queor y
C o ntex t AlItecr na te 1.2.3.4.1.4.2
Q ueory N, amec

a r ain et e rs i-in (I-o n tex t
1.2.3.4.1.4.1 Pararieters

17igu re 1-20. P'er forri A ILornatc fName A nd Context Quer y

22 5

Appendix B: Structural i;odel Data Dictionary
Generat ionl Tool

Thlle Prelimninary Design f or t he Da ta Dictionary

Generation Tool establishes a structural framework for the

application software which forms the interface between the

tool user a nd(the data dictionary database. T he mo delI

presented in this appendix depicts thle structural framework

of the data dictionary generation tool. This model uses thle

Structure Chart method to depict thle structural framiework.

The model is introduced and discussed in chapter 3.

Structural 1lodel For the Data Dictionary Generation Tool

Figu re T iL1e
2-1 Top Level Structural ilodel.
2-2 Perf orm~ Data Dictionary Func tions (1 l~

2-3 Selection Of Dictionary Operation (1.1)
2-4 Input Entity Definition (1.2)
2-5 Input SADT Activity iDefinition (1.2.1)
2-6 Input SADT Data Item Defi nit in (1.2 .2)
2-7 Input 11FD bubble Definition (1.2. 3) I

2-S In pu t D)UD Da ta Fl ow De 1 fi n it ion (1.2 .4)
2-9 1inpu t SC P roce(,s s De fin iti o n (1.2.)
2-10 Input SC Pa ra;mete r De f inij t i oi (1.26
2-1 1 In11)UtL Cod1 .'Odtle DCLilnit ion (1 .2 .7)
2-12 TInput Code Variable Definitioni (I . 2.3)

*2-13 2'trieve Entity Definition (1.3)
2-14 Set rieve SADT Activity Definition (1.3.1)
2-15 lRetrieve SADT Data Item Definition (1. 3. 2)
2-16 Ketrieve 1)Fi Bubble Definition (1 .3. 3)
2-17 Retrieve DFD Data Flow Definition (1.3.4)
2 - I etLr ie ve SC Process Definition (1 .3 .3)

*2-19 Ret rieve SC Parameter Definition (1.3.6)
2-20 Re t r ieve Code Jodule Defijni tion (1.3.7)

2-1 etrieve Codec Va ria blIe De f in it ion (1.3.83).
2-22 1ijod i f y 111t i t y De fin11i t io (1.4
2-23 Hiod i fy SADI' Activity Def inition (1.4.1)
2-24 Iodify SAIT D)ata Item 0ef inition (1.4.2)
2-25 10od if V DFDI'u1) 1ub1le DecfIi niiL ion (1. 4 .3)
226 1Iod i f y 1)1D Data Fl ow Jetf iri it ion (1 .4.4)

2 2

2-27 Nlod if y SC Proc(,ss De f in it ion (1.4.5)
2-28 1lod if y SC Pa raie ter De fi n ition (1.4.6)
2-29 1lo d ify Code :tod ule :ef in it ion (1.4.7)
2-30 11od if N Code Var-iable Def ini tion (1 .4.8)
2-31 Del ete E~ntity 1Pefinitions (1.5)
2-32 Delete SADT AcIi v it y De f in ition (1 .5.1)
2-33 Delete SADT Data Item Definition (1.5.2)
2-34 Delete DUD B.uble Definition (1 .5.3) -.

2-35 Delete DUD Dato Flow De fi n ition (1 .5.4)
2-36 Delete SC Process Definition (1.5.5)
2-37 Delete SC Pararie ter De f ii t ion (1I.5 .)
2 -38 Delete Code M1odule Defi nit ion (1 .5.7)
2-39 De let1.e Code Va r ia ble De f in it ion (13.
2-40 Li st En t ity Nai:ics (1I. 6)
2-41 Pr in t Ent ity De fin it ion s (1.7)

p"

227

User 'Inputs 6 System Prompts

6 System Responses

Perform Data
Dictionary
Func Lions
1.0

Figure 2-1. Top Level Structural Nodel.

Selection Of
I) ictionary
O pe ra t i on

Input Entity Retrieve lodify Entity
Definition Entity Definition

Definit ion
1 .2 1 .3 1 .4

Delete Entity List Entity Print Entity
Def inition Names I)efimmitioins'

1 .5 I. 1.1

Figure 2-2. Perform Data Dictionary Funct ions (1.0).

228

pI

Determine Operation
Froin Tool User

Operation

D te rine Enlt it y
Type (Action or
Data) F rom User
I . 1.2

0pe r a tioni

Ln ti ty T y pe

Determine Sof tware
Representation From
User and(Call
Functional Module
1.1 .3

SFigure 2-3. Selection of Dictionary Operation (1.1).

Input SAI)T Input SADI' Input DI'D
A cti v ity D~ata Item bubble
Definition 1)e f in it ionI Defini tion

1211.2.2 1.2.3

Input 1)FD Input SC lIlIpult SC
Data Flow Process Pa r ame t er
Def iit ion lDefimliit ioil Der initionl
1.2.4 1.2.5 1.2.0

mI npu t C ode III it Co d e
M d 0 (111 V ar inl 1) 1
D~efif] i t ioil IDel'ji t il
1 .2 .7 1.2.8

pFigure 2-4 . I nplit hilt it y DerfinIitio (1.2)

229

Append: T,: Act ivit y

Def iniltion Input

A At i lvi t. y P~roject. Name

ILnt ity Namel

Append To Append 'Io Append To
Activity_10 A_- Hierarchy A _History
Relation lRelat ionl R I at i on1
1.2.1.2 I...31.2.1.4

Activity_1O A _Hierarchy A_Hfistory
Tuple 0 0.. lul 1) upe

A ppend T o A pp)n (I 'I o A ppenid To
j *AReference AAlias I A Desc

R ela t io n Relation i~elatioln

1.2.1.5 1.2.1.6 1.2.1.7

A AReference AAlias IADesc

Tuple r~ uplo 'rup1(

FDa ta iDict ionary Data ha s

Fi gure 2-5. 1 n put S;AI)' Ac t i v itL v De I i n i i on (1 .2.1)

230

A 1)pen d To 1)a t a I L emI
KelIat ion A nd Con trol
Def in it io)n Inrpu t
I1.2 .2.1I

Activity Project Name

Tup~e~t Enityv Name

Append To Append To Append TFo
D -Value_-Set 1)_l ierarchy D -iHistory
Relation Relation Relat ion
1.2.2.2 1.2.2.3 1.2.2.4

I)_ ValueSetl iihierarchy DH Hi stor y
Tuple T- u) Tuple

j *Append TJo Append To Append To
D_-Reference V I)Alias 1P_-Desc
R elIatLi on Relation PRelation
1 .2.2.5 1 .2.2 .6 1 .2.2 .7

D DReference I)_Alias DDesc
Tu plIe TuplIe 7 Tle

L Data Dictionary IDatahase

Figure 2-6. 1iput SAlVE lato I temn TDeini tion (1.2.2).

23 1

A ppen d To I'ub bl e
Re la tion And Con trol
Def init ion Input

1. 2 .3. 1

INb blIe Pro ject Name

It i t y Na mec

7-

Append To Append To A p pend(To

Bubble_ 10 11_Hierarchy B_-History
Relation Relation Relation
1.2.3.2 1.2.3.3 1 .2.3.4

Bubbe_ B Hiera rchy BH1i s to ry

'ruplie ON ~Tp 1e < 0 luple

Append To Append f o App))e nd(To

BReference f BAIi as 11 _e s C
Rel a t io n R eIa t ioni ReCl at ioil
1 .2 .3.5 1 .2 .3.6 1.23 .7

BReference BAlias BHistory
T u p 1 C T uplIe Tuple

D~ata)i c ti oriarv Dat abasl

Figure 2-7. 1 11p)ut- 1)F11, ih h I e 1)eof i it i o (1 .2. 3)

232

Append To Data _: 1 ow
Relat ion nd Control

)efi nit ion Input
I .2. 4.1

Data F low Project Name

Ft n it. y Name

Append To Append To Append To

1)F Value Set 1)I I i erarc hy F Ii story
Relation Relation Relat ion
1.2.4.2 1.2.4.3 1.2.4.4

DFValue Sec,' PP llierarch I) li storv
j -* T i ec ' u p1 e T tip I e

Arpend To Ap)cnd l Append To
D Reference UF Al ias 1P Desc

Relation Relat ion Relation
1.2.4.5 t.2.4.6 I 1.2.4.7

FR~~ ~ ~ ~ l eFere)_- D) e s c

D!1: Reference UP" AI ans U)

TpieT e T uple

.7

Data 1)ict ionary Database 1

Pi ure 2-8. 1 npo t 1 1)F1) Data 1 ow e l fi nit ion (I .2.4).

"2 3 3"""

• , ~~~~~~~~~~~~~.-•...... :".-............. ..- ,.-..- .?"-i-.

Append To Process
Relation And Control
Defi ni tiori Input
1 .2.5.1

Process Project Name
T u) 1 e

10 1 ? Ent it v Name

Append To Append To Appen o
Process_ O Pr _Call r Pasd
Relation Relation],e at ion
1.2.5.2 1.2.5.3 .2.5.4

Process-10 Pr a I I P I -P a:;!; o d
Fu pIe Tt)1 e j l-) 1

C),4

Append To A ppend 'I Append To
Pr ltierarchy Pr Al ia s PrIli tory
Relation Relation Relat on
1.2.5.5 1 .2.5.() 1 .2.5.7

PrIlierarchyl r a Pr _ History

Tuple O 11 '.op .u lj Tu (e

/ 7

Append 1'o Append To Append o
Pr Reference Pr Al o Pr Iec

* Rel ation Relat ion I tl i I

Pr _Reference 1)r_Al Pg ' i c
' p C "l'iple i 11 p I u

Data 1) i c rI onn I r t a ai a1; e

Fi gure 2-9. Input SC Process Def nt i on 1 2 .

2,4

0"

Append To Parameter

Relation Arnd Control
Definition Input
1 . 2 .6). 1

Paramreter Project NameTuple 0
,upl Entity Name

Append e To Append To
P Value Set t t' _AI ins P Desc
Rela t ion Relation Relation
1.2.6.2 1.2.0.3 1.2.6.4

P ValueSet l'_Alias P 1D)esc
Tuple Q ' , I e Tuo1u 1 e

Append To Append To Append To
P }History P Hierarchy t' Reference
Re I at i on Relation ,elation
1.2.6.5 1.2.0.6 1.2.6.7

1) li story) _Hierarchy P_ Reference
Tuple up I e TI p i e aC'

)a t a D ic t i on a r v 1) a t a ha so

Si ,,ure 2-10. I np t SC lI rne t, or lie i nit inn (I . 0.6)

235

S... .. !- . .<.i . < > i. .- v .v . . - . < . .- j - ;i - . z:

Append 'To Module
j Relation And Control

Detinition Input
1 .2 .7.1

Module n oject Nam~e

Entity Nlame

Appen To Ap p n(I ToA pp e nd T o

Reltio RlatonR el1at ion
1.2.7.2 1.2.7.3 1.2.7.4

Module_101 MDesc !i_Ai1g
* upl e Q4 z Tu p 1 T 11ple

Append To A ppend To Append To
MCall M Pass HHistory
R ela t io n R ela t ion ii Relation
1.2.7.5 1.2.7.6 1.2.7.7

MCall ?11.-'Pass UI Iistory
Tuple . Tuple ITu p Ie

A Ap p end To A A)pp)enrd To

rRef erence HAIia s
R eIa t io n Relat ion
1.2.7.8 1.2.7.9

11 gue211. put (:ode(Nod(u I (' ef i n it i on (1 .2 .7)

236

Append To Variable
Relation And ControlU Defi nitioi Input
1 .2.8. 1

VTuprlea*bI ?Project Name

7 ? Entity Name

Append To Append To I Append T0
VHlierarchy VIDesc VValueSet
Relation Relation Relation
1 .2.8.2 1 12 . 8.3 1 .2.8.4

VHfierarchy VDs au-e
T* u1 Tuple

Append To Apn oApedT
V_h1istory _-la _-eeec

Relat ion Relat ion Relation
1.2.8.5 1.2.8.6 1.2.8.7

VHistory VAli as VReference
Tuple 0 oTu ple Tuple -

00

Figure 2-12. Input Code Varinble Definition (..)

237

Retrieve eroeRtiv

Activity Dt tmBbl
DefinitionDeiiinDf ito

1.3.11..133

Retrieve Retrieve Retrieve
DFD SC S

0Data Flow Process Parameter
Definition Definition Definition
1 .3.4 1 .3.5 1 .3.6

to

Retr ieve Retrieve

Code Code
M od ule V a r i abl e
Definition Definition
1 .3.7 1 .3.8

Figure 2-13. Retr ie.veF Ht it y Def ini t ion (.)

238

.F ~Ret ri eve Fromn Activityi Relation And Control
Defini tion Retrieval
1 .3. 1 .1

Qual ifier AtvyTue Project Name
J viyTp.l 7 Entity Name

RtivFrmRetrieve From Retrieve From

RelaionRelaionRelat ion
1.3.1 2 1. .1.31.3.1.4

QuualifierAtiit 1 Qualificr pA History

Qualfier -Qualifier1 AIliereirchy Tu pl1e
Tuple 7

t 0-
Retrieve Froi 'Retrieve From Retrieve From
AReference AAlias A_1)esc
Relation R elIa t ion R eIa t io n
1.3.1.5 1.3.1.6 1.3.1.7

Qualifier~ ~AReference Qualifier 8A-Ie.c
Tuple Qualifier AAlias ul

? u p 1e

Data Dictionary Database

Figure 2-14. Retrieve SAI)T Activity IDefinit ion (1.3.1)

239

Retrieve From Data Item
Relation And Control
Definition Retrieval ,an..
1 .3.2. 1

Qualifier DataItem Project Name
Tuple Entity Name

Retrieve From Retrieve From Retrieve From
D_ValueSet DHierarchy DHistory
Relation Relation Relation
1.3.2.2 1.3.2.3 1.3.2.4

Qualifer D ValueSet Qualifer D_ istory
? "Tuple Qualifier DIierarchy Tuple

Tuple

/

Retrieve From Retrieve From Retrieve From
DReference 1) Alias 1) Desc
Relation Relation Relation
1.3.2.5 1.3.2.6 1.3.2.7

Qualifer ~D RfrneQualifier D-Ds
Y_ , Qa r DAlias Tuple

Data Dictionary Database

Figure 2-15. Retrieve SADT Data Item Definition (1.3.2).

240

,-. ,- . .-..).-..)'.'-. ..'--'-i..'.-.-..'-.........-.--..-.".".-......-..-..-..',....-.•..........-...-....----"....-....-...--...-..-.....'....

Retrieve From Bubble
Relation And Control
Def iition Iletrieval
1 .3.3. 1

Qualifier b Lubble Project Name

1 Tup Ie 7)Ety.Name

Retrieve From Retrieve From Retrieve From
Bubi 10P,1_Harh Bistory

*eaio -lto Relation'
1.3.3 2 1. .3.31.3.3.4

QuIlfierVubbe-I Qualifier? LBHistory
Tuple

Retrieve From iRetrieve FromRerveFo

R elIat ionRea inR l io
1 .3.3.51.3301337

*Qu ali f ie r? BRefercnce QB QuaIlf iecr ~BIDcs c
'luple Qua 1 if i r BAlilas 'Pupl c

Data D)i c tionary !)at h

Figure 2-16. Ret r i (-vc D)11 Bubble Def i n i t ionl 1 .33)

Retrieve From Data Flow
Relation Anti Contr-ol
Defini tion Petrieval
1 .3.4. 1

Qualifier ~ 1 Data Flow Project Name
Tup-l Entity Name

DFValue set _FHeacyIFIitr

R ato Relation Relation
1.3.4.2 1.3.4.31.44

Qualifier 0-i _FValue-Set Qualifier DF History

Retrieve From Retrieve FromRer veFo
DFReference _FAla _FDs

ReIt onReIatiolRelation
1.3.4.51...1347

Quali f ier9 DF_ Reeec u if ler' IDlEDesc
Tuple Tue

Qualif ier 9 PF Alias

* Tu plIe

IDaia Di cti onary Database

Figure 2-17. Retrieve IDl'I Data _Flow Definition (1.3.4).

242

1. Qualifier

Retrieve From Process
d Relatio'n And Control

Definit ion 1'etrieval
1 .3.5. 1

I. Pro c ess Project Name
T u p1e Entity Name

Retriee FromRetrieve FromRerveFo
Prcss1 PrCallPrase

Relation~ R elation elto
1.3.5.2~ 1 .3.5.31. 54

1. ProcessJO 1.9TrCall 1.T ~Pr Passed
Tuple 6Tuple -Tuple

Retrieve From Retrieve Fromi I Retrieve From
I PrHlierarchy PrAisrIitr

ReaineainRelation
1 .3.5.5 .3561357

1.S Pr Hierarchy I. I;Pr Alias I. Pr 1istorv
Tuple Tuple --9.Tple

Retrieve From RereeFrom Retrieve From
Pr_-Reference PAlg PrDesc
Relation Relation R eIa t io n

31.3.5.8 1.*3.5.9 1.3.5.10

I PrReferenice 1 JPAf I Pr rc

Data Dictionary Database

DFigure 2-18. Retrieve SC Process Definition (1.3.5).

243

1. -Qualifier

Retrieve From Parameterd Relation And Control
Definition Retrieval
1 .3.6.1%

1.0 Parameter Project NameI 1 Tuple ~ . Entity Name

RtivFmRetrieve From Retrieve From
PValueSet Pla PDcsc
Relation Il Li ii eat ion
1.3.6.2 13631.3.6.4

1 .? tP ValueSet 1.? ,PAlias 1.cflP)Desc
0 Tuple Tuple Tuple

Retrieve From Retrieve From I Retrieve From
Pi st o ry PI Ii e ra rc hy PReference
Relation Relation Relation
1.3.6.5 1.3.6.6 1.3.6.7

1.? Phistory 1.9 1 PHierarchy 1 .Q 1 PReference
~0T upl1e ' ~Tuple 0Tpi Ie

Data Dictionary D~atabase

Figure 2-19. Ret rieve Pa U-rameter Defin it ion (.[3.6).

24

- Qual if i er

etrieve From Hodule
,la'tion And Control
Definition Retrieval
1.3.7.1

S (lI u I e Project :a me
u plup e 0 oEntitv N'ame

Retrieve From Retrieve Froin Retrieve From
MDesc N Al ,p, H Call
Relation Relat ion 1.Clation
1.3.7.2 1.3.7.3 1.3.7.4

1. 0 ~ ~_ec1 1l,1. HCall
Tuple 0 10- Tuple -

Retrieve From Retrieve From IRetrieve From
M Pass HI History Ii Reference
Relation Relation Relation
1.3.7.5 1.3.7.() 1.3.7.7

0 _,1 as 1.0 _ sListory 1. 0 ii Reference

0 Tuple Tuple 10 Tuple

Ret rieve lr "Retrieve From
MAI i a s '1 uIod ule_I0
Relation Relation
1.3.7.8 1.3.7.9

1. 0 A Iia sI C odule_ l(0
0 Tuple

IL

.... at a D i c t i o n a r y D a t a b a se

Figure 2-20. Retrieve Code Mlodule Defint ion (1.3.7).

2I

v:~~.-,.. -.. . . .'.:- .v .'.,- '.. ... •.." -- •-.•.•.' -,.-

1.-Qualifier

I lRetrieve From Variable
Relation And Control
Definit ion Retrieval
1 .3.8.1

I 1ria te 'Project Name
Tuple r)Entity lm

Rtiv FrmRetrieve From Retrieve F'rom
V_ irrh V_-Desc VValueSet

ReIaLionRelation R, ela t i on1
13821.3.8.3 1.3.8.4

V. HVistory 1V VAliasV Reference

D)ata Dict ionary Datiabase

Figure 2-21. RetLr ie ve S C:1 Par 1mct er 1)evf in it ion (1.3.8)

246

M~lo d ify S ADT 1-1lo d if SAD' H od if v D)FD1

Activity Data]tem Bubble
Definition Definition Definition
1.4.1 1.4.2 1.4.3

Hod ify DFD lod if y SC lad if y SC
Data F] ow Process Parameter
Definition Defini tion lefinit ion
1 .4.4 1 .4.5 1 .4.6

.;odify Code iodifv Code
Hod u le Var i a) 1c
Definition l)efinit ion
1.4.7 1 .4.8

Figure 2-22. ilodify Entity Definition (1.4).

247

... .. :

1. - Qualifier
2. - Tup!e Ilodification

o Select F lement Of SA)TY
Activity Definition To

'Be i f ied
1 .4.1 .I

rElement Selection

fy Nod i fy Mlod i f y

Activity Activi ty_1 A i-iierarchy
,e1 a L i on 1\'e I at i on Pe1 a t ion
1.4.1.2 1.4 1.3 . 4. 1 .4

1 . q .2..?, 2. 1.K 2.

/ ,

Modify 10(1 if iodify
A_History A_1eferencc A_ Iias
Relation 1 a I elation
1.4.1.5 1.4.1.6 1 .4.1.7

.2. 0 2. 1 2 .

Mod i f y
A_Desc /
R elation

1. 1. .

.2. L1
D ata)ictjoriary D atabase

Figure 2-23. ifodi fy SAD'1" Activity De inition (1.4.1).

248

...........................

-..
. . .

1 . Qualifier
2. - Tuple Modification

S elect E entint Of SADT
Data Item Definition
To Be Modified
1 .4.2.1

Hodi f y H od i f Y Hod i f y
Data Item [D Value Set D tHierarchy

6 Relation Relat i on Re lation

1.4.2.2 1.4.2.3 1.4.2.4

. 1 2 .: t 2

7,"- 7 i -

Mod if y Iio(Ii fy Mod i f y
D_llistory DReference 1)_Alias
Relation Relat i on Rel ation
1.4.2.5 1.4.2.6 1.4.2.7

' 2 . , 2 2. 1 2.

Hodify /
D Desc
Relation
1 .4.2.8• /

1. 2 , .

ilt1) U i fc t i oilry Database

li ure 2-24. Retri ve t rl)vI l)DT a Item 1)e inition (1.4.2).

20
-"["2 4 0("

" '-0 . - - -: .' : .-.' , .- " ' - , . ' -- , - . --.: -, -- , . , . -, < -. . ', , - " . .

1. Qualifier
2. T1uple Modification

Select'Element Of 1)FI
hubble Lefiinition 'To Be
Ho d.i f ie d
1 .4.3.1

M1od dif y Hodif v Hlodif v
Bubble Bubbl'e_10 BH Iierarchy
Relation Relation Relation
1.4.3.2 1.4.3.3 1.4.3.4

I 1. ? 2. 1.cjc2. 1? 2 .

Modif y H od ify 1od if y
B_h1istory BReference B BAlias
R ela t io n Relation R ela t io n
1.4.3.5 1 .4.3.6 1 .4.3.7

I I0 d i f y
BDesc
R elation

I. 4 Q

02 .

DaaDictionary Datnbasc

Figure 2-25. Hodi fy DF"! Bubble Definition (1.14.3)

250

1. - Qualifier
2. - Tuple Modification

SelIec t E-'lement Of DUD
Data Flow Definition
vFor M od if ic it io n
1 .4.4. 1

Mod~~~101 ifyNdfyN f y
DaaFoF au e DFHierarchy

Relatin K e t Jo n- e] Tat ion
1.4.42 1..4.31.4.4.4

Mod if y Modif y NMod if y
DFHlistory DF Reference DFAlias
Relation Relation Relation
1.4.4.5 1.4.4.6 1.4.4.7

2.~j 2. 1.0? ?2. 1.00C2.

Hodif y
DFLDesc
Relation

'I. T2.

D~ata Dictionary Databise

Figure 2-26. Modify DUD) Data F1low De f in it ion (1.4.4) .

251

1. - Qualifier
2. - Tuple Hodification

Select Element Of SC
Process Definition For
Modification 1.4.5.1

Modify M'odifv Modify
Process Process_10 PrCall
Relation Relation Relation
1.4.5.2 1.4.5.3 1.4.5.4

1 , 02. 1. ?2. 1. 2.

Mo0d ify '11od if y Modif y
Pr Passed Pr Hierarchy Pr Alias
Relation Relation Relation
1.4.5.5 1.4.5.6 1.4.5.7

1.? O 2. 1.' 02. 1. 0) 2.

Hodify Modify IModify
Pr _History PrReference PrAlp

Relation Relatioil Relation"
1.4.5.8 1.4.5.9 1.4.5.10

1. 2. 1. C 2. 1. ? 2.

lodify
PrDesc
Relation
1 .4.5.11

I. Q Q.2, .i

Data I)ictionary Database

Figure 2-28. MIodify SC Process Definition (1.4.5).

252

~~~~~.... ..... .•-.'2. % ., .



1. - Qualifier
2. - Tuple Modification

Select Element Of SC
Parameter Definition
For Hodification
1 .4.6.1

-I---

Mod if y lodif y Miodif y
Parameter P Value Set P Alias
Relation Relation Relation
1.4.6.2 1.4.6.3 1.4.6.4

. I 2. 2. 1. 2.

[~di f y H Mo d i fy Nod if y
Desc PHistory 1 P_Hierarchy

Relation Rela ti on ilRelation
1.4.6.5 1 .4.6.6 1.4.6.7

1.? " 2./ 1. y2. 1.? 02.

Nodify
P Reference
Relation
1 .4.6.8

I. 0]2.

la ta Dictionary )tabase

Figure 2-28. Iodifv ,( Parameter Definition (1.4.6).

253

- *...'..- .- " ..? -'"• '-' . . ii : ? .- '. ''' "-... ""



1. - Oualifier
2. - Tuple Hodification

Select Elentnt Of Code
liodule "Defi nit ion
[or lodificotion
1.4.7.1

Hodify Nodi fy MIodify
Nodule :_Desc I_A I n
Relation Relation Relation
1.4.7.2 1.4.7.3 1.4.7.4

N -odif y Modif y I Modi f y
Ni Call -_Pass 11 hIistory
Relation Relation R"elation
1.4.7.5 1.4.7.6 1.4.7.7

12 2. p2 ~?~ 2.

Modify [ Iodify Hodify

I Reference IiAlias Module_10
Relation l'elation Relation
1.4.7.8 1.4.7.9 1.4.7.10

1. 2. 1. 0 2. 1.. 92.

' /
\ /

VData Dictionary Database

Figure 2-29. Modify Code MIodule Dc finition (1.4.7).

254

.........................,

. . .. . . . . . . . . . . 2 5 . . . . . . . . . . . . . . .



1. - Qualifier
2. - Tuple Hodification

Select Ellement Of Code
Variab~le Definition
For Nodific,-it ion
1 .4.8.1

Mod f yHod f vNod if y
VaribleV-IlerachyVDesc
Relation~~~1 Rellat onPIati o n
1.4.8 21. .8.31 .4.8.4

I. 10 . 2. 1. ? 2.

Hodif Iodify I 1 d i f y
_ _-a u -e _-1str VAl ias

Relaion ~ elaionRelation
1.4 8.51.4 8.61 .4. 8. 7

tT2 2 1. ( 2.1.0 o2.

Mod if y
VReference
Zelation
1 .4.8.8

I.T 2.

DatLa Dictionary Database

Figure 2-30. ilodi f Code Vari able De f inTi t i On ( )

255



Delete SADT Delete SAI)T Delete DFID
Activity Data [tern Bubble
Definition Def ini tion Def inition
1.5.1 1.5.2 1.5.3

0Delete DFD Delete SC Delete SC
Data Flow Process Parameter
Definition Definition Definition
1 .5.4 1 .5.5 1 .5.6

to

Delet CodeDelete Code
M od u1eV a r iable
Def intion)c[ mit ion
1 .5.71 .5.8

Figure 2-31. Delete Ent i t~y Der init i on (1.5).

256



1. - Qualifier
2. - Delete Command

Control Delct-ion Of
SADT Activity
De fin it ion

1 .5.1 .1

Project Name?
Vntity Name 0

Delete From Delete From D~elete From
*Activity Activity_ ID AIierarchy

Relation Relation Relation
1.5.1.2 1.5.1.3 1.5.1.4

2.. 2.2

1.5.1.5 1.5.1.o . . .

2. ~2.?2.

2. e i

Data Dictionary Database

Figure 2-32. Delete SADI Activity Definition (1.5.1).

257



1. -Qualifier
2. -Delete Command

Control Deletion Of SADT

D~ata I tem Dof in it io n
1 .5.2.1

Delee Frm Deete romDelete Fromi
DaaIe _-au-e 1)_Hierarchy

RelaionRelaionR elation

1.5.22 1..2.31.5.2.4
_1.?

2. 2.j

Delete From Delete From ( Delete From
DHistory DReference DAlias
R eIa t io n Relation ReIa t io n
1.5.2.5 1.5.2.6 1.5.2.7

1. 2'. .

Delete Fr o m
DDesc
\ elation

1 .5.2.8

2. Q

Dat i.ic t io nary iDatabase 1

Figure 2-34. Delete SAIJT Data Item D~efinition (1 .5.2).

2 5 t



1. Qualifier

2. Delete Command

Control Deletion Of ND
Bubble 'Definition
1 .5.3.1

Project flameo
Entity Name

Delee Frm Deete romDelete Fro-m
BubeBube1 BH fierarchy

Relation~~~~1 1) cati.o ,eI a t i o 1
1 .5. .2 15.3.31 .5.3.4

Delee Frm Deete romDelete From
B 13itryB-Rfeec Alias

Relation~1 ZltoRelation
1.5.3 5 1..3.61.5.3.7

2. r~I2.Q 2.

Delete Fr o m
BDesc/
Relat ion/

1.5.3.8/

2. 1

Da ta 1)ic t i ona r Da t; aas e

Figure 2-34. Debl(t DF111 PuihhIc Df init ion (1 .5.3).

259

.............................. . .... .. .....



1. Qua1i f ier
2. Delete Conmand

Deicte Conroo Deleti Pon Ofeet Fro
DataFlownt Ffo ValueStionhearh

1.5.4.2~ 1.5.4.3 ..

DeUlete From Dielete Pr om ii [,Clete Frov-
Dat Filory 1)F VRaference 0 D F-1AI ra rc
R'eIa t ion 1ZeIa ti;o n - lat io n
1 .5.4.2 1 .5.4.( 1 .5.4.7

1.0 1.0i 2.
2.o~ 2. .

Delete From D'-.t P/o

Relation /e t i eIati01
1 5.1.401..8.

2 . 2.

Filure F-rom eeirn11)Dt [o. ~~n to~(..)

226

Da L a .)ict i rv D a1 1



1. Qua lier

2. Delete Command

Control Delction Of SC

Process Def nition
1 .5.5.1

Project Name
Entity N'lamie©

Delete From Delete From Delete Fror
Process Process 10 Pr Call
Relation ReIat on }'eTat ion
1.5.5.2 1.5.5.3 1.5.5.4

2 2. 2.

Delete From Delete From j Delete From
Pr Passed PrIHierarchy PrAlias
ReTationI Relation R, elation
1.5.5.5 1.5.5.0 1.5.5.7

2. 2 2 .

Delete From I Delete From Delete From
Pr History Pr_ Referencc P Alg
Relation Relation 1,Relation
1.5.5.8 1.5.5.9 1.5.5.10

1.0 !  1,

2. 1 2 2.-
/ , /

I:"

Delete From
Pr_1)esc
Relation /
1.5.5.11 /l iL

2. QL%,

)ta Dictionary Database

* Figure 2-36. Delete SC Process Definition (1.5.5).

261

p.

...........................................................



1. Q)ualifier
2. Delete Cormmand

Control bcietioi (Of C
Parameter Del init ion
1 .5.6. 1

P roj ect !lame
Entit Sm

Delee Frm Deete ron clet Fro

Parameter 1'ValueSet P)_alias
Relation zelat ion 'elation
1.5.6.2 1.5.6.3 1.5.6.4

2.0 2.2

to Delete From D~elete From Delete From 1
PDesc PHistory P-ici rarchy
Relation Relation Relation
1 .5.6.5. 1 .5.6.6 1 .5.6.7

1.0l2.
2. 0

Delete From

PReference
Relation /

1.5.6.8

2* 1

)a t i I ic t io ii, r v Pi t a1 a a

Figure 2-37. DcleteCrnr )rl or 1 e lo 1 nit ioni(.l

2 2



0

1 . Qualifier
2. Delete Command

Control Del tion Of Code I

Se10(111 ic "Def i nit i on
1 .5.7 .1

Project :.ane 0
Entity Nane 0

Delete From Delete Fromn Delete From
11odule Module_O i A I
Relation Relation Relation
1.5.7.2 1.5.7.3 1.5.7.4

b
I

.

2 .c 2.Q 2.
?Q

1'.. / /"

Delete From~i I)elcec From delete 1'rom
1i Call Pa .eas Ii Ilistory
Relation IPelation ! ClaLion
S1.5.7.5 1 .5.7.6 1 .5.7.7

1.© 1.

2.0? 2.9?

Delete From Delete Fron
i P eference i iiAias
Relation I Relation
1.5.7.8. 1.5.7.9

[ Data i) ictionary Database

Figure 2-38. Delete (ode Iodule, Del initio (1 .3.7.

203

.~~ ~ ~ ~ ~ ~~. . . -: ..-- .:. - :. .'- . ---v



1. Qualifier
2. Delete Command

Control Delc-tion Of Code
j~i Variable Delinition

1 .5.8.1

Project manc e
Entity N~amfe 0

Delete From Delete From Delete
Variable V [ierarchy V Desc
Relation 1t 1n Relat io
1.5.8.2 .1.5.8.4

2.O 2.
ICN

Delete From Delete From Delete
V_ValueSet V History VAlias
Relation i ation Relatio
1.5.8.5 1.5. 1..8.7

1. 1. 1.
2. '2. 2.

Delete From
V_Reference
R elation
1.5.8.8 /

1. /~

"'.____- _____ __ _ I'

i)ata Dictionnry Databnsj

Vi5,,ure 2-39. I)eleto -' Varialle Dofinition (1.5.8).

264

... .. ... .. ... .. ... .. ... .. ... .. ... .. .V'"iV



List SADT List SADT List D[I'D
Activity Data Item Bubble
Names Names : ames
1.6.1 1.6.2 1.6.3

"1Y

List DFD List SC List SC
Data Flow Process Parameter
f Nanes Names N a mes
1.6.4 1.6.5 1.6.6

List Code List Code
Hodule Variable
H amcs N ames
1 .6.7 1 .6.8

Figure 2-40. List Entity anws (e.).

265

.



Print SADT Print SA~DTV Print DEL)
Activity Data Item Du b b Ie
Definitions Definitions Defimit ions
1.7.1 1.7.2 1.7.3

Data Flow Process Parameter
Definitions Definitions Defini tions
1 .7.4 1 .7.5 1 .7.6

Print Code Print Code
Hod ul1e Variable
Definition DefIi n ition
1 .7.7 1 .7.8

Figure 2-41. P1ri nt En ti t y D'i iit ions (1.7)

260



Appendix C: User's Guide For The Data Dictionary
Generation Tool

This appendix provides information on how to use the

current implementation of the data dictionary generation

tool.

General Information: Data dictionary information is entered

and retrieved from this tool in two formats; a data

definition and a action definition. A data definition

describes the data or information used by the action

components of a program. Included under the category of

data definitions are files and hardware accessed and used by

a program. Action definitions apply to those components of

a program which use and manipulate information or data in

performing a functions. Procedures, functions, activities,

processes etc. are described in action definitions.

Introduction: A series of menu driven displays allow the

user to select the particular dictionary operation he or she

desires to perform. The user will also, by means of these

menu driven displays, select either a action or data

definition to manipulate. The user will also select by

means of thesr display menus the type of software

representation they wish to enter or ret r ieve dictionary

information for. ThiS t ool supports four d i fferent types of

software represen, tat ions : SADTs , Data Flow Diagra ws

Structure c-harts, and Code.

General Instructions: The user will communicate with the

267

.....................

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



program in one o tile following three methods.

I. You will be provided with a menu display of acceptable

response to questions. You will indicate your response by

entering the number corresponding to your selection and

striking the carriage return on the keyboard.

2. You will be prompted to enter front the keyboard the

answer to a question asked by the program. A guideline will

be drawn on the screen to indicate the allowable length of

your response. If your response exceeds the guideline, that

portion of text will not be accepted by the program. When

you have completed your response, strike the carriage return

to inform the program that you are ready to continue.

3. You will be asked a yes or no question by the program.

You will indicated your respone by typing a y for yes or a n

for no and striking the carriage return.

The following section will provide more specific guidance on

how to use the data dictionary tool to input definitions for

the structure chart, SADT, (Iata flow dia,, rams, and code

software representations.

1 . STRUCTURE CHARTS

A. Process Definition. You will be provided with the

following prompts.

1. Enter project name. You will be p iven a project name

which wi 11 identify your entries into the dictionary

database. The ,ool will check this input. If you enter a

project name not: known to t he tool, your input wi 1l be

208

::?. ......:. .. v....,-........ ........ ., ......- i.-..,... :....... .. ,.€i,:...
-:---~~~~~~~~~~~~~~~~~~~..'".-. :."._. _..."£.... ....... . .- '..'.'_.....'-... . .... i .-r . . .. .. .



rejected and you will prompted for this information again.

2. Enter process name. Type the name of the process you

wish to define. Process names mav not exceed 25 characters.

3. Enter process number. Type the number associated with

this process on the structure chart.

4. Enter process description. Enter a text description of

the process being defined. You may enter this description

in the form of several lines of text each containing 60

characters. The guide line will give you a visual fix on

the allowable line length. Milen you near the end of a line

of text, simply strike the carriage return and continue

entering text on the next line. When you have completed the

description, strike the carriage return two consecutive

times to inform the program that you are ready to continue.

5. Enter algorithm. The directions for this entry are

identical to those for the description entry discussed above

except that the information being entered describes the

algorithm used by the process being defined.

6. Enter the name of an input or output parameter for this

process. This prompt asks you to identify the internal

input and output requirements of this process. This is not

a request for the parameters which are passed to this

process (luring a suhrout ine call. ITh is in format ion %il not

always be on tile structure charts. You miay f ind it

necessary to create new name for these parameter. This

information is used to define the interface requirements for

269



this process.

7. You will be asked to identify the parmeter entered above

as either an input or output of this process. Enter the

number corresponding to the proper selection in the display

menu.

8. You will be asked to classify this parmeter as either

data or flag information. This is done by entering the

number corresponding to the proper selection in the display

menu.

9. You will be asked to enter a number which identifies the

position this parmater has is a call to this process ie I

for first, 2 for second, etc.

10. You will be asked if any more input or output parameter

exist for this process. Items 6 through 9 will be repeated

40
until you respond n to this query.

11. Does this process call any other processes? A response

of y to this questions allows items 10 through 19 to

appear. A response of n to this question shifts execution

to item 20.

12. Enter the name of a process called by this process.

13. Are any parameters passed during this process call? A

response of y to this question causes items 14 through 18 to

be executed.

14. nter the name of the parameter being passed. Enter

the name of the parameter which is involved in the process

call between the process being defined and the process

270

... .



identified in item 12.

15. Indicate if the parmeter is data or flag information.

Enter the number corresponding to the correct response

listed in the display menu.

16. Indicate the order of this parameter in the process

call. Enter 1 for first or 2 for second etc.

17. Identify this parameter as one of the following:

a. Passed from calling routine to called routine.

Parameter X is passed from calling process A to called

process B.

b. Parameter is returned by the called process to the - ,

calling process . Parameter Y is returned by tile called

process to the calling process.

c. Parameter is both passed from the calling process to the

called process and returned by the called process to the

calling nrocess. Parmater Z is both passed to the called

process and returned to the calling process.

18. Are there any more parameters passed during this call.

Enter y and the programs executes items 14 through 17.

19. Does this process call any other process? A y response

to this question causes items 12 through 18 to be executed.

20. Does this process use or change any global parameters?

A y response to this question causes the program to prompt

you to enter the name of the global parameter and to

indicate if it is used or changed by this process.

21. Enter the parent process of the process being defined.

27 1

................. :,::



This prompt askes for the parent structure chart of which

the structure chart being defined is its child. For example,

process A with a process number of 1.2 is the parent of

processes C and D with process number ].2.1 and 1.2.2

respectively.

22. Does a reference to a previous development stage exist

for the process being defined? A y response to this

question causes the program to prompt the user for the

reference type. Acceptable response to this prompt are

provided on a display menu. The program will then prompt

for the reference itself.

23. Do any alias names exist for this process? A y

response to this question will cause the program to prompt

40 for the alias name and a comment as to why an alias was

used.

24. Does this process read from or write to any files? A y

response to this question will cause the program to prompt

for the name of the file and ask for a indication as to

whether the file is read from or written to by the process

being defined.

25. Does this process read to or write from any hardware?

A y response to this question will cause the prop, ram to

* prompt for the name of the hardware item and a indication as

to whether the hardware is written to or renld from.

26. Enter the date.

27. Enter the author's name.

272

.o . "

,L-" '. -'-- --... .. . . . . . . . .' . . . . . . . . . . . . . . . . ..-." .' . .. ". . . . . . . . ..•. . ..". . . ..-"- . ... , , .. " "'-. . ." '." "%' " ''"



1. SRUCTURE CHARTS

B. Parameter Definition. You will be provided with the

following prompts.

1. Enter project name. Enter your team desig[nation. Team

a, Team b, etc.

2.Enter parameter name. Enter the name of the parameter you

wish to define.

3. Classify the parameter as one of the following:

1. Global Parameter

2. Local Parameter

3. Hardware Input or Output

4. File

Enter the number corresponding to the correct response for

the parameter being defined.

4. Can a data type be designated for this parameter? Enter

y or n. If a n response is entered the program jumps to

item 5. If a y response is entered, the following display

appears.

1. Character

2. Real

3. Integer

Enter the number 'orrespondin, to the dnLa type for the

parameter beinp, de f i ned

5. Can a minimm vl ie be speci fied for t his paraPieter? .-

En t er y or n. reos1)o ns v o f ni w ill cau f; o the p-)r o pra m t o

jump to item 6. A response oC y will cause a prompt for the

73I



11 .i Inir u II v a u e o the p a ra re t r 1.1'it er t h i s I li mu ni v a 1u e

when this prompt appears.

6. Can a max i mum vaI if e be s pcc if i ed for t hi s pa rameter?

Enter y or n. A n respone %ill the cause the program to

jump to item 7. A y rcsponie wi I I cause a prompt for the

maximum value of the parameter to appear. Enter the maximum

value w:,hen this prompt appear,;.

7. Can a description of the range of values assumed by the

b parameter be entered? Enter y or n . A n response will

cause the program to jump to item 8. A y response will

cause a prompt for the range of values to appear.

8. Does a finite and reasonably small set of values exist

which the parameter can assume? Enter y or n. A n response

causes the program to jump to item 9. A y response will

cause a prompt to appear asking you to enter a value the

parameter can assume. Once you have entered the value, the

program will ask you if any more values exist. As long as

you respond with a y to this question, you can continue to

enter a set of values the pararieter can assume. W.hen a n

response is detected for this question, the program jumps to

item 9.

9. Enter description. 'hi s prompt allows you to enter a

de sc r ) p i o ni o li c I rep a me t. e r he i TI, (10 F ed. 'l'lle dve -ript i ln -

wi . b e e n t er i a r i -m a w h i c Ii a I I ow (,0 c h i ra c te r s of

text per line. A pide I ine will ,. give you an indiration of

how much space you have left on a line. When you approach

274



the end of a line, hit the carriage return and the cursor

will move to the next line do;wn. You can then continue

entering your text description. When you have completed the

description, hit the carriage return I time enter the last

line of your description and a 2nd t ime to signal the

program that the description has been completed.

10. Is this parameter part of another parameter? Erter y

or n. A n response to this question will cause the program

to jump to item 11. A y response will cause a prompt to

appear which asks you to enter the parent parameter of the

parmeter being defined.

11. Can the parameter beinp defineid be decomposed into

other parameters? Enter y or n. A n response will cause

the program to jump to item 12. A y response will cause a

prompt to appear asking for the name of a parameter which

make up the parameter being defined. After you have entered

the name of a parameter which makes up the parameter being 

defined, the program will ask you if any more parameter

exist which constitute the parameter. A y response to this

question will al low vou to continue enteriw-i, the names of

parameters. A n response will cause the program to jump to

item 12.

12. Does a reference to another development phase exist for

this parameter? 1",nter y or it. A n response will cause the

progr 'm to jump to item 13. A y response will cause the .

following display to appear.

275

. . * - ....- * .... •i. -. : i.. .- .A...-,2 -',. i",i , ' .,.._': . ,. .2 ..... ' . -, 2 2",-.2 : . " - -'.' .-- ,..:,._ - _'.'.-._ .° .i -



Indicate the reference type associateI with this paranmeter

by entering the number associated with the selection given

below.

I. REQUIREHE'' S NUiBER

2. SA1)T DATA ITEN TAI'E

3. )1FD DATA FLOW NA*IL

You will select the appropriate reference type by entering

the number associated with one of the items given in the

menu. Once the reference type is selected, a prompt will

appear which asks you to enter the actual reference to the

previous desi gn phase. Once you have entered this

reference, the program will ask you if any othei references

exist for this parameter. A response of y to this question

will continue to allow you to enter refercnces to previous

m e design phases. A n response will cause the program to jump

to item 13.

13. Do any alias names exist for this parameter? Enter v

or n. A n response will cau:se thme programii Lo -jump to item:1

14. A y response will cause the program to prompt for an

a I ias name for the parameter. Once the parameter is

entered, the program will prom;,t the user for a comment

concerning the a I in, ie , why an a I ins name was used. The

program will Iieu ask t ie user to enler t he name of t lie

process where the al Ias is used. The proprnm will len ask

if this alias name is used i any other processes. If tile

response is y, th e pro ram will allow ad( dit ionai process

2 7 6



0

names to be entered. If th, response if no, the program

will ask if any other alias n: mes exist for the parametere.

A y responses will cause item 13 to he repeated. A in

response will cause the program to jump to item 14.

14. Enter tile date, example ,io-day-yr, 12-14-84.

Enter the current (late in the above format.

15. Enter the authors name, Enter your name

The items presented above provide a detailed example of tile

sequence of tool pronpts which will be provided by the tool

during the input of a structure chart process and parameter.

The input definition routine for the other software

representations are similar.

2. Definition Retrieval

In order for the tool to retrieve a definition, it requires

four pieces of information from the user: type of

representation, entity type (action or data), project name,

and the name of the action or data entity. The type of

representation and the entity type are designated by

entering the appropriate sel.ections from menu displays.

Once this information is obtained the tool will prompt tile

user to enter the project name and entity name ass;ociated

with tie defiiition the user wishes to retrieve. [he tool

will then display the entity definition to the terminal

screen. If the ent it v ninme entered by lhe s ser does not

correspond to any defi'ntio beingto maintained by the tool,

277

o. . ... . .. . . . . . . . . . . . . . . . . . .



AD-RI52 215 RN RUTONATED/INTERRCTIYE SOFTNRRE ENGINEERING TOOL TO 4/4
GENEROTE DATA DICTIONARIES(U) AIR FORCE INST OF TECH

HEGT-PATTERSON AFB OH SCHOOL OF ENGI. C M THONAS

UNCLASSIFIED DEC92 RFIT/OCS/ENG/4D-29 F/G 9/2 NL



11111111 2

1.8

11111L25 1 -11I.. 1116

MICROCOPY RESOLUTION TEST CHART

NAIIONAI tIRFAII OF TANDARP'. j-. A



a message to that effect will be displayed to the user.

3. Definition Deletion

To delete an entity definition from the dictionary, the user

must again select the deletion operation and the

representation type and entity type (action or data) from

the display menus. The tool will prompt the user for the

project name and entity name associated with tile definition

to be deleted. Two deletion option are available :

1 . Delete the results of an input operation. This

option simply removes from the dictionary the effects of an

input operation. This is the option to use when the user

wishes to erase the effects of an erroneous input defintion

operation.

2. Delete all reference to an entity from the

dictionary. This option removes the entity completely from

the dictionary. Upon completion of this option, no

reference to the deleted entity exists anywhere in the

dictionary.

4. Print Entity Definition.

To print all entity definitions beloning to a particular

project, tile user selects the appropriate representation

type and entity type (action or data). The tool then

prompts the user to enter tie project name associated with

these definitions. 'The tool then proceeds to write the

278

• ... .-..-
*...- * 2 ;*.* * .-..-. (



definition to a file. As oach entity is written to this

file, the tool dispJays thre entity name on the terminal

screen. The user can then use the conventions of the

operating systems to obtain a hard copy of these

definitions. The following are the file names to which the

corresponding definitions are written.

FILENA1lE

prodef Structure Chart Process Definitions

padef Structure Chart Parameter Definitions

modef Code i-lodule Definitions

vadef Code Variable Definitions

5. Error -lessages.

The tool checks for certain errors in user input and

displays the error to the user and provides the user with an

opportunity to correct errors. The tool checks to see if

prompts which ask yes or no questions receive or n in

response. If not, then the erroneous response is displayed

to the user and he/she is asked to re enter their response

to the question. The tool also checks to see if selection

from menu displays are correct (ie number within the range

of allowable response has been entered.)

6. At current time, the data dictionary generation tool is

,' made up of several. different programs stored under the

EE 690/DD690 directory on the VAX/UNIX system. A synopsis

279

• ~... . .. .... .. ..- , -............ , • *.*. . *.. *.. - . .-.



of these programs and the functions they perform are

presented below:

Program Name

dd out Input and Retrieval of SADT Activity and Data

Item Definitions, Structure Chart Process and

Parameter Definitions.

incodemo.out - Inputs a code module definition.

outcodemo.out - Retrieves a code module definition.

incodeva.out Inputs a code variable definition.

outcodeva.out - Outputs a code variable definition.

printpa.out - Prints out all parameter definitions under a

a specific project name.

printpro.out - Prints out all process definitions under a

specific project name.

printmod.out - Prints out all code module definition under a

specific project name.

printvar.out - Prints out all code variable defintions under

a specific project name.

280



1iblion ran h y

1. Pressman, Roger S. Software Engineering: A
Practitioner's Approach. New York: IcGraw-I1ill Book
Company,1982.

2. Zelkowitz, larvin V. "Perspectives On Software
Engineering", Computing Surveys, 10: 197-215 (June
1978).

3. Softech, Inc. ilodel of the Current Reporting and
Information Retrieval System for Air Force Program
Element Monitors. Report Number 1032-1, AD Number
A073119, 17 December 1976: IEEE, INC. 1979.

4. Hiller, Edward. Requircruents/Specification Tools,
Tutorial: Automated Tools For Software Engineering,
New York: IEEE, INC. 1979.

5. Peters, Lawrence J. "Software Representations and
Composition Techniques", Proceedings of IEEE, 68:
1085-1093, (September 1980).

6. Bergland, G.D. "A Guided Tour of Program Design
Metodologies", Computer, 11: 13-36 (October 1981).

7. Bergland, G.D. "Structured Design Methodologies",
Tutorial: Software Design Strategies (Second Edit.).
New York: IEEE, INC. 1981.

8. Bergland, G.D. and Ronald D. Gordon. "Software Design
Strategies", Tutorial: Software Design Strategies
(Second Edition). New York: IEE., INC. 1981.

9. Jones, Heilir Page. "Transform Analysis", Tutorial:
Software Design Strategies (Second Edition). New
York: IEEE, INC. 1980.

10. Peter, Lawrence J. and Leonard L. Tripp. "Comparing
Software Design Methodologies", Tutorial: Software
Design Strategies (Second Edition) New York: IEEE,
I NC. 1981 .

I. Lefkovits, Henry C. Data Dictionary Systems.
Wellisley: Q.E.D.. Information Sciences, Inc. 1980.

12. National Bureau of Standards. Prospectus For Data .
Dictionary Systems Standard. Report Series NBSI,,
80-2115, Washington: National Technical Information
Service, September 1Q80.

281

[::."--."..:-::.:-- ..-'.. :...--.-. . . . . . . . . . . . . . . . . ........... .. . .. . . . .... .



13. ladfield, 2Lt Steven 1. An Interactive and Automated
Software Development Environment. HS Thesis, AFIT/GCS/
EE/82D-17. School of Engineering, Air Force Institute
of Technology (AU), Wriplit-Patterson AFB 011, December
1982 (AD-A210 920)."

14. Rullo, Thomas A. Advances In Data Base ilanagement.
Philadelphia: IHeyden and Sons, 1980.

15. Leong-ltong Belkis W. and Bernard K. Plagman. Data
Dictionary/Directory Systems Administration,
Implementation, and Usage. New York: John Wiley And
Sons. 1982.

16. National Bureau of Standards. Functional
Specifications for A Federal Information Processing
Standard Data Dictionary System. Report Series NBSIR
82-2619, National Technical Information Service,
January 1983.

17. Date, C.J. An Introduction To Database Systems.
Reading: Addison Wesley Publishing Co., 1981.

18. Weldon, Jay-Louise. Data Base Administration.
New York: Plenum Press, 1981.

19. Atre, s. D)atabase: Structured Techniques For Design,
Performance, and Hanagement. New York: John Wiley

O and Sons, 1980.
20. Ralph 1. Sprague, Jr and Eric D. Carlson. Building

Effective Decision Support Systems. London: Prentice
Hall International, INC., 1982.

21. Weinburg, Victor. Structured Analysis. New York, New
York: Yourdon Press, 1978.

22. National Bureau of Standards. Federal Requirements For
A Federal Information Processing Standard Data
Dictionary System. Report Series NBSIR 81-2354,
Washington: National Technical Information Service,
September 1981.

23. National lBureau of Standards. [ederal Information
Processinf, Standard For Data Dictionary Systems
\ ol ume I, Genera I Desc r i pt ion of F I'S IDS. I"ash i n ton:
National Technical Information Service, August 1983.

24. ING ES Self-Instruction Guide (VAY/VIS Version 1.4,
September 1981) Rclational Technology Inc., 1982.

282



25. EQUEL/C User's Guide (VAXVVHS Version 2.1, September
1983) Relational Technology Inc., 1981.

26. Woodfill, John et al. "INCRES Version 6.3 Reference
Hanual . February 1981.

27. Brian I. Kernighan and Dennis H. Ritchie.ThC
Programming Languaoe. London: Prentice-Hall
International, INC. , 1978.

h28 INGRES Reference Manual (Version 2.1, VAX/VM1S,
September, 1983) Relational Technology Inc., 1983.

283



TA' A

Captain Charls W.. Thomas was born on 10 Ilay 1954 in

Florence, South Carol ina. I c raduated from high school in

Hartsville Souti Ca rol ina in 197'2 and at t ended iewbe r rv 

College from which lie received the degree of !achIor o f

Science in Chemistry and Business Administration in Hay

1976. Upon graduation, he received a commission in the

USAF. lie completed Communications-Electronics Officer

School in October 1977. lie then served as Maintenance

Supervisor 773rd Radar Squa~dron, Montauk AFS, New York until

March 1981. lie then served as Chief of Maintenance

Photographic Processing Interpretation Facility , 16th TRS,

Shaw AFB, South Carolina. Uhile assigned at Shaw AFB, he

S1 completed all requirements and was awarded a degree of

Masters Business Administration fro Golden Gate University.

lie entered the School of Engineering, Air Force Institute of

Technology in May 1983.

284

~. . . .|



UNCLASSIFIEI)
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

_________________________________ Approved for public release
7b. OECLASSIFICATION/OOWNGRADING SCHEDULE d istribu tion unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/Et.G/84D-29

6. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION

fic. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Wright-Patterson AFB, Ohio 45433

ft. NAME OF FUNDING/SPONSORING [Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (i applicabte)

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO, NO. NO

11, TITLE (inlnude Security Classification)

See Box 19
?2. PE~RSONAL AUTXHOR .. ati,)A

13s. TYPE OF REPORT 7131b. TIME COVERED = 14 DATE OF REPORT , ,._Mo~. Da 1 15 PAGE COUNT

16. SUPPLEMENTARY NOTATION

19. ABSTRACT ICon tInt. on reverse of necessary and iden tfy by block number)

Title: Ali AjTAE)HF'A~V SOFTI.-WE ';GWL?;i'0(01'
TO GENERZAT'r DATA 1)JCTTIO!ARM. , i';SA

Thesis Chairman: I)r Gary B. Lamlont.-

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITEO K)SAME AS RPT 0OTIC USERS tIJ(ASSII I T )

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

Dr Gr B Lmn (513) 255-5533 A''/N

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGF

. . .7.



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

The purpose ofr-4+- investi-a" ion is to design and develop
6n automated/interac'tive software engineering tool which generates
data dictionaries. This tool is to provide the user with an
interactive data dictionary tool to support the develop of software
in all phases of the software life cycle. The tool supports data " "
dictionary information specific methods of software representation
The initial implementation of this tool supported four methods of
software representation: SADT, data flow diagrams, structure charts,
and code. The requirements definition for the tool includes a
discussion of the objectives and concerns associated with the tool
development.A Data flow diagrams are used to formulate a requirements
model. The preliminary design specifies the type of information to

r be contained in the data dictionary for each of the methods of
software representation supported and the database design required
to maintain the data dictionary information. The structural framework
of the application software which provides the interface between the
tool user and the dictionary database is specified and structure
charts are used to model this structural framework. In detailed
design, algorithms are developed for the tool's application
software. . l. ./.24iA,.---> ..

The dictionary database is implemented through the use of the
INGRES database management system. The application software is coded
using the C programming language. The application software interfaces
with the dictionary database by means of embedded EQUEL (INGiRES

-O Embedded Query Language) statements in the C language source code.

The tool was implemented on the VAX 11/780 computer using the UNIX
operating system.

i -

I Frll~T ~ -. rit ,,p ~rT4 ~

p ' "'



FILMED

5-85

DTIC


